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Extracting the “‘trace” from a Cartesian tensor requires working with the whole tensor. Extracting the
trace from a symmetrized tensor is shown to allow one to work with separate invariant subspaces (hence
yielding more convenient analytical results), and thus, reduces the number of coupled equations to
be solved. Symmetrized trace extraction is described for extended symmetrization procedures based re-
spectively on modified Young symmetrizers, Wigner projection operator symmetrizers, and Young
symmetrizers. Symmetrized traceless tensors usually need to be further symmetrized to obtain fully
symmetrized traceless tensors. Also described is a method where each rank of trace extraction is performed
in a separate step and is accompanied by a step of symmetrization. This method yields fully symmetrized
traceless tensors and the least coupling of equations,

1. INTRODUCTION

Tensors with vanishing mixed variance “traces”
li.e.,, 2, 0:iT::: = 0] constitute subspaces which are
invariant under the full linear group GL(n, c) and
its subgroups.r For subgroups of GL(n, c¢) which
possess a metric tensor G;,(G¥) the condition of van-
ishing mixed variance traces is equivalent to the
conditions

2 G, T =0,
is
% GikTi:ik--. = O, e (z GiJ'T”k”. —_ 0’
1 1)
S G*Tyy... = 0, - - )
£1.3
For tensors carrying indices of both a group H and its
ying group

* Present address: Department of Physics and Astronomy,
University of Georgia, Athens, Georgia.

1 We use the word “‘trace” to collectively describe tensor opera-
tions of the kind discussed in the text.

1

cover group G (such tensors are respectively denoted
by Latin and Greek indices) where H has some
metric tensor, we can use a vector operator (o‘i); to
write

Tiik-nhﬂ = E(Ui);T,-k...ha.

Using the metric tensor to impose a vanishing trace
condition among all vector indices 7, j, - - -, hyields in
general a nontrivial decomposition into invariant
subspaces.?

Symmetrization of tensor indices also furnishes
invariant subspaces and, for the classical groups, use
of both symmetrization and simple trace operations
yields irreducible tensors. Although the order of
application is arbitrary, the usual approach is to first
extract the traces and then symmetrize the traceless

2 It is exceptional for trace operations to only trivially supplement
symmetrization, but the trace operations based on the skew metric
tensors of SL(2, C) and SU(2) do present such exceptions.

Copyright © 1968 by the American Institute of Physics



2 DONALD R.

indices.>* The extraction of the symmetric (anti-
symmetric) trace from symmetric (antisymmetric)
tensors has also been described.® For such one-
dimensional representations of the permutation group,
the traditional symmetrization procedures provide
sufficient state organization. The purpose of this
article is to describe symmetrized trace extraction
for all representations appearing in an arbitrary rank
tensor. We seek to obtain symmetrized trace extrac-
tions in a decoupled form, i.e., with no coupling
between tensors derived from equivalent (or inequiva-
lent) representations of the permutation group. To
achieve this goal we need the state organization pro-
vided by extended symmetrization. [Weyl’s symmetri-
zation procedure describes each invariant subspace of
a tensor with a single formal state and allows all
arrangements of all sets of index values.® Extended

symmetrization procedures describe each invariant

subspace of a tensor with a set of formal states
forming a basis representing the permutation group
and allow a single arrangement of each set of index
values.f]

The disadvantages of Cartesian tensor trace extrac-
tions are that (a) it is necessary to always deal with the
whole tensor, (b) to evaluate the traceless components,
a number of coupled linear equations must be solved,
and (c) cumbrous analytical results are obtained. These
features are illustrated by considering the mixed
variance tensor T7,. To obtain the traceless tensor
(T%,)° it is necessary to solve six coupled linear
equations. Using three-dimensional indices the result
is

(T ﬂc)o mc - ‘Sh 2 (6a/40)[3Tka1

+ 18Ta7k 7Tkja + 3T1ka
- 5’; Z (6;)'/40)[_2Tkai - 7T¢l;ik + 3T3ki

2T:k:i - 7T?ak

+ 18 z + 3Tkza l')ka]

— 6,’:2 (83/40)[18T}y, + 3T, + 3T%;
a,b

- 7Tgu 2T?1a 7 ia:‘]’ (11)

which has yet to be symmetrized. Using symmetrized
trace extractions it is possible completely to decouple
these six equations and obtain results in a much more
convenient form.

8 M. Hamermesh, Group Theory (Addison-Wesley Publishing
Company, Inc., Reading, Massachusetts, 1962).

4 M. Ikeda, S. Ogawa, and Y. Ohnuki, Progr. Theoret. Phys.
(Kyoto) 23, 1073 (1960).

5 H. Weyl, The Classical Groups (Princeton University Press,
Princeton, New Jersey, 1946).

¢ D. Tompkins, J. Math. Phys. 8, 1502 (1967).
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2. METHOD

For notational convenience the discussion is given
in terms of tensors of a single variance and carrying
indices of only one group. With appropriate modi-
fication the results of this section clearly apply to
any of the trace operations described in the
Introduction.

The decomposition of a Cartesian tensor into
traceless tensors can formally be written’
7;-1 g, & ( ; )0 + G“zz(T?a

= G,,%(Tf:“ SR

-—1 0
+ Glxlr 1213 rlr—l + Glz’s 1114 T iy
+ Gizir T}Ssrl_rl—x P
+ G, i (T T+ G,

r—1%r -2
T, 46 r)O

1315(T1416
+ G%(Gizz,(T“
+ Gi,_li,<Gi1ig( 13

0+.

132 ,q(T ' r)0
r) +

r—2)0

. .> + e,
2.1
In the notation (73775 ") the 3+ - - r indicates that
this traceless tensor 1s derlved from Ti T, and the

5. r indicates which of the orxgmal mdlces the
tensor carries. Thus we may have

(T4 = (T + G (TR ) +
This notation is not redundant in actual calculations
because indices then take specific values which, due to
repeated values, may not unambiguously indicate
the indices’ origin. A superscriptsuchas3:--r, 5+ r
is called a label configuration.

It has been shown that with the extended sym-
metrization concept, symmetrized tensor bases for
GL(n,c) and GL(n, c) subgroups can be obtained
using not only Young symmetrizers but also using
modified Young symmetrizers or Wigner projection
operators® based on the permutation group. These
symmetrization procedures are considered separately
in the following parts.

r—2 3 -
‘-2

A. An Approach Using Modified Young
Symmetrizers

Operating on Eq. (2.1) with (PQ")} on the left yields
(PQ')’}T,-I-- -+, = (PQI(T, --.~,)° + G (T35

. 5000 . P
+ . + Gilig<G‘i3i‘( i5 r,T r) + ) + ]
(2.2)
7 If, instead of being Cartesian, the initial tensor T, . .. ;, has some

symmetry conditions among its indices, then such conditions need
to be considered when writing an equation expressing a decomposi-
tion with trace extractions. Specifically, one needs to use appropri-
ately symmetrized metric tensors instead of the Cartesian metric
tensors shown in Eq. (2.1).

8 E. P. Wigner, Group Theory (Academic Press Inc., New York
1959).



SYMMETRIZED TENSOR ““TRACE’> OPERATIONS 3

Using the permutations {Si;}an o relating standard
tableaux as B* = S,;G*, we operate on Egs. (2.2) to
form the set of N*equations (extended symmetrization)

{S(PQ)T,,...
—%WQMGVWV+QAﬂ“a°+~-

+ Gi1i3<Gi3i4(T?5 T’D . ) +-0+ ']}(ani)-

(2.3)

For any given arrangement of indices i, - - -/, these
components span a subspace irreducibly invariant

under S,. Contracting each of Egs. (2.3) with
Gi» Giyy» v o5 and G, gives the
=D+ C—-2)+ -+ DIV

equations.’

> GS,(PQ)T;, .

117y
= > G"5,(PQ"); [Glm(T?;.'-'-',-, Ot

+ Gi1i2<Gi3i‘(T?r._..-_1;-’r5. . -1')0 + “. > + .. ]}
(all ¢)

{zwwﬂﬂmﬂl

1 Zl G158, (PQYIG, (TSI 4+ -
+%wma$$mW+~wa},
(ally)

(2.4)

where vanishing traceless terms were dropped. The
remaining symmetrized trace equations are obtained
by repeating this process, gaining

[c =D+ =2+ + DIV

additional trace equations each time, until insufficient
free indices remain for further contractions. This
process enlarges Eqgs. (2.4) to Eqs. (2.4) et seq. On the
right side of Eqs. (2.3) the tensors having common
indices (perhaps rearranged) but different label con-
figurations are collected to form expressions which
are identified by their assembly of label configurations.
The same expressions appear in Eqs. (2.4) ef seq., and
these are the symmetrized traceless tensors.

By the full reducibility of S, the invariant subspaces

? If a metric tensor G; is invariant under a matrix group ¢, then
its symmetric and antisymmetric parts are each also mvarlam This
follows from the fact that symmetrization decomposes tensors of
G, and G is such a tensor. If both G,;, and G,,; are invariant then
the associated trace conditions lead only to vanishing traceless
tensors. Hence, we need only consider symmetric and antisymmetric
metric tensors. Thus trace equations are formed by contractions
with the [(r — 1) + (r — 2) 4+ - - - + (1)] tensors Gy, Giyigr** >
G Gigia) Gizu,"',Giz.',;"' B

ivirs G:‘r—u’r'

do not intersect, so all tensors in Eqgs. (2.3) are given
as solutions of Eqs. (2.4) et seq. These equations do not
couple the trace operations of independent (but
possibly equivalent) representations of 8,.1° Since all
symmetrized traces are obtained by solving Egs.
(2.4) et seq., we see that, associated with representation
A, thereareatmost{(r — 1) 4+ (r — 2) + + -+ + (DJN*
independent symmetrized traces of rank r — 2, the
same number of independent symmetrized traces of
rank r — 4, etc. Each solution of Egs. (2.4) et seq.
belongs to a set of tensors [also solutions of Eqs. (2.4) et
seq.] spanning a subspace which is invariant under the
group of permutations of traceless indices. Such a
subspace (of traceless rank r’) is usually reducible
because the symmetry of S, often does not coincide
with irreducible representation symmetry of §,. < 8§,.
The tensors which the final symmetrizations yield are
those which we call fully symmetrized traceless
tensors.

Rather than initially extracting all ranks of sym-
metrized traces, we can extract each rank of appro-
priately symmetrized traces in a separate step.
We now explain how this is done. We start as
usual™ with Eq. (2.1) and arrive at Eqs. (2.4). Pre-
viously we used additional metric tensor contractions
to get Eqs. (2.4) et seq., which were solved to get
symmetrized traceless tensorsof rankr — 2,7 — 4, -+,
1 (or 0) and by subtraction we obtain the symmetrized
traceless tensors of rank r. Instead we now solve
Eqgs. (2.4) [not Egs. (2.4) et seq.] for symmetrized
tensors of rank r — 2, which are formally expressed
as

Tr—2[(T?371, 0’ 1414(T

and are explicitly expressed as

|:z sz iy Z iaiaTix o

21t i3ty

.7)0, cl,

i :l’

where the brackets indicate (linear) functional
dependence here. Thus we have

[EGHQ iy iy z G1314 i o ]

i3t igiy
'7')0 . ]
s .

= Tr-2[(Tia~ . -i,)o’ T 2314(T

10 The mdependent representations meant here are those of
{S;(PQ’ ), Jai1: belonging to distinct values of j and/or A. The sums
in Eqs. (2.5) ef seq. do, of course, include representations of S, which
are mdependent by virtue of belonging to different sets of values of

(2.5)

i,
u The reason we use Eq. (2.1) rather than the form

= . )0 o Beaer T4
Topro, =@ 0+ G (T80T + Gy (T80T
‘e 1 T2
+ + G '_l,r( i .;r_z)
[the tensors (T‘: ‘Ct. D), - -+ are generally not traceless] is because

the explicitly symmetrized metric tensors are needed for the sub-
sequent steps of symmetrized trace extraction.
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By subtraction we obtain the symmetrized traceless
tensors of rank r. Individually considering each one
of Egs. (2.5) [one equation for each tensor 7,_,], we
then multiply through by {S;;(PQ")}} (an « of 8,_; and
contract the resulting equations with {G,;} to obtain
equations which we solve for symmetrized tensors of
rank r — 4. These tensors are expressed formally as

T l(TE 500, o, G (T3, 500070, -
and explictly as

r—a[thu szllg o } .
23ty iy

By subtraction we obtain the symmetrized traceless
tensors of rank r — 2. We continue this process to
obtain, by subtraction, traceless tensors having the
symmetry of irreducible representations of §,,
8, 9, ", 8,, plus a (traceless) remainder of rank 1
or 0. This method can also be used with the sym-
metrization procedures of Parts B and C. In fact, since
the symmetrizations of rank r, r — 2, , 2 are
independent, they can be carried out by different
procedures.

This method yields the least possible coupling
among trace equations because no further decoupling
of the trace extractions is possible and irreducible
representation symmetrizers are used. This method is
illustrated in the second example of Sec. 4.

B. An Approach Using Wigner
Projection Operators

Multiplying Eq. (2.1)
Ul, = (Nz/r!):E [D}-1],,[D}115eLeL,
¥
and allowing all j gives the N* equations

{U = Ul [(T;I i,)o + Gilig(Ti'ia"‘-.
+ G1112<Gz (Ti5 .- 1'2,"5 B

A

jgliy
Taun-
(2.6)

The states {U5T; .. .;, hau 5 span the invariant sub-
space of row ¢, so Eq. (2.6) is of the same form as
Eq. (2.3) and the rest of the analysis proceeds as
before.

314

C. An Approach Using Young Symmetrizers

Unlike the idempotents used in Parts A and B, the
usual (unmodified) Young symmetrizers do not all
annul one another. However, we have not used this
property, so the formal analysis for this part is the
same as that for Part A except that the modified
Young symmetrizers (PQ’) of Part A are replaced by
Young symmetrizers (PQ).

TOMPKINS

3. INNER PRODUCT STRUCTURE
In addition to Eq. (2.1), we have

o= (T, ) O (TR (T, ) @
@(Tiii Y @ (TN @ (T
@ (TR O (T
O (T, 8 W@ ) @T T @)
-@(( ,—,...;;_2;3""‘2)"@ @ ()

The subspaces of this direct sum partition are in-
variant. What Eq. (2.1) does is embed each of the
invariant subspaces in a Cartesian tensor space of
rank r. Relative to the metric (G)" [r-fold Kronecker
product of the rank-1 space metric tensor] of the
Cartesian tensor space, the embedded subspaces of
distinct traceless rank are mutually orthogonal.® This
orthogonality is an important and general property
of tensors decomposed by trace extraction. For the
unitary symplectic group Sp(n), trace extraction is
carried out with the symplectic metric, and yet the
embedded subspaces of distinct traceless rank are
mutually orthogonal relative to either a symplectic
metric or a Hermitian product.

Symmetrization refines the partition obtained by
trace extraction, while symmetrized trace extraction
refines the partition obtained by symmetrization.
The same final partition is obtained in both cases,
because otherwise the final partition would never be
irreducible. It could be further shown that the same
states are obtained in both cases, if the operations of
trace extraction and symmetrization are shown to
commute. However, it is not necessary to investigate
this, because, although only symmetrized tensors are
handled in symmetrized trace extraction calculations,
Eqs. (2.1) show that actually the operation of trace
extraction still precedes that of symmetrization. Thus
the states obtained will be the same as those obtained
for explicit Cartesian trace extraction followed by
symmetrization. The discussion proceeds from the
viewpoint of Cartesian trace extraction followed by
symmetrization.

Carrying out symmetrization with unitary repre-
sentation Wigner projection operators, we formally
obtain subspaces of the form

{UT,...)"% UG, (T 0

If (T, ,...;) is orthogonal, then the subspaces
{U; (T )°} are fully orthogonal. (See note
added in proof ) For the other subspaces, it is to be
noted that, for example, we actually do not solve for
{ULG,, (T3 "7 )"}, but rather solve for certain linear

ja™~4yig
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forms!?:
Fs Ex T{Uj‘athlz(nz:r 0}
Do fULG (TR T ) + -

+ Togoopn{USGe (T, 1%

+ T UGG (T -Tir)o} +

+ F13~-‘r—l{U?qGizi,(Ei::;:'.rﬁl,l }+ -

+ I, ,_2{U?0Gi,_lir(Tilﬁ-z' . .’1-",,2_2)0}. 3.2)

The f()]'m
{UsITs.. Gy (T30 4 -
+ F12 cen r—2Gir_1i,.(T12 crer—2 0]}

f1i2 " " ir_g

shows that here
tensors

Ty, G (T2

we get full orthogonality, if the

r\0

)+
+ Fm “es T_'ZGir_li,»(le . r—2 _)0

192t drog
are orthogonal.’* A similar discussion applies to
i RS 8- IR N (3
{quGiligGi3i4(7;5 cedy ) }, 3 CtC.

If symmetrization is instead carried out with
Young symmetrizers, then, using the fact that each
set of equivalent representations {4#}, {B*}, -+, {D*}
of 8, can be directly obtained in a form having the
inner product structure® (the inner product structure
for symmetrized non-Cartesian tensors is given as
trace extraction generally yields such tensors),

Atiy, - i) [ AfGns -5 00) = U4, B)
X (Bi(iy, - i) | Bi(Gy, v aj =
= {4, DYD{(iy - i) [ DYy -+, (3.3)
where { is always independent of state labels ¢ and f

12 This may be clarified by a short example. For Young pattern
(2, 1) and a symmetric metric tensor, Eqs. (2.6) appear as

Uzzii,zuka = U;i:,zll[(rﬁk)o + G“T,:j + G, T} + G, T},
Ulgéi,zllriik = Ulzéi,ﬂl[(rijk)o + G, Ty + GuT; + G,TH,
and expand to
UsitouTone = Usil,an(Tip)® + 3G, 2T — T; — T})
— 3G, 2T} — T} = TH — 3G, QT — T — 1)),

2,1 — 2.1 0
Utsi,anTie = Utay, e (i)

+ L_ Gu2T} — T? — T}y — ~—1—; Gu2T} — TP =T,
2V3 2v3
We solve for 272 — T2 — T}), - - -, which is equivalent to solving
for G;;(2T} — Ti — Ty), - - -, as the metric tensor is assumed already
given. Clearly the expressions G;;(2Ty — Ti — T}), - -, are each
linearly dependent on {U%'},, G, Teh{U2}, G, THrand (U%},,G,. T}
13 If only the original tensor T, ... ;_is orthogonal, then multiplets
are mutually orthogonal if they are embedded in representations
obtained with different values of g and/or 4 in qu.
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and of indices i, - - - i, and j;, * - - j,, and

<A¢(’1’ Y lr) | A‘;(]la e ’jr)> = ;”(A’ B)
X <A‘1‘(’1’ T lr) l B‘;‘(.Il’ e 5jr)> =

= Z(A’ D)<A‘ll(lla T, lr) | D‘;(.]la e 5jr)>,
AB, AXBY(iy, -+ i) | A%, o)
= (Bi(iy, ", ) | Biy, ) =
) lr) | D‘f‘(jls T 9jr)>’

= M(B, DYB{(i. -

Z(Da A)<D‘t‘(ll~ T, ir) I A‘;(jly T ajr)>
= A(D, BYDi(iy, -5 i) | Bi(jy, o )y = -+
= (D{(ir, ", i) | DG+, (34)

where A is always independent of state labels 7 and f
and of indices 7, - - - i, and j, - -  j,, and may vanish. The
subspaces {S,,,(PQ)»(T;, .. ) (m=1,2,---, N*)can
then be reasonably made fully orthogonal by using Eqs.
(3.3)and (3.4). It is noted that, for example, rather than
solving for {S,, (POG, (T2 %)%, -, we solve
for certain linear forms:

Ag... {Sim(POYmGi, i (T 0"}
+ A24 o r{Sim(PQ)fnGilz‘;,( T;Z:‘ -. ‘. ~ri,)0}

+-+ AIZ---7—1{Sim(PQ)fnGili,(7;'3?3.'.""2’_,11)0}
+ A14---r{Sim(PQ)fnGizia(TM'“~ri,)0} +

i1dg -

sr—1

+ Mg o SinPORG o (B3, T ) + -+
+ s a{ S (PG, i (5 T2 (BS)
Writing expressions (3.5) as
{Sim(PQVLIAs .., Gri(T 1) + -+
+ Are o rsG (T8 T

i1y iy

shows that the results of Egs. (3.3) and (3.4) are
applicable and this makes reasonable the task of
orthogonalization. A similar discussion applies to
{Sim(PQ)fnGilizGiau(I;::....'.rz';s.“r)o}’ e, etc.

It should not be overlooked that the invariant
subspaces due to trace extraction can have their
embeddings described either by appropriately adding
indices to the traceless tensors [e.g., Eqs. (2.3)] or else
by contracting indices off of T, ..., [e.g., Egs. (2.4) et
seq.]. The important point is that the inner product
structure results obtained apply for both descriptions
of embedding.

4. EXAMPLES

The following examples should adequately illustrate
a number of useful points.
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Example 1

Here we investigate the embedding of the spherical
bases of SO(3) in SU(3). We also use this example to
illustrate some of the recoupling described in Ref. 6.

For the self-representation of SU(3) with diagonal
generators

W3 4

H, = '—‘é\/g , Hy= % s
0 -3
the diagonal generator of SO(3) is
1
V3H, + 3H, = 0

—1
With the other SU(3) generators described as
Ei;j) = (1/V/6) |i), the SO(3) raising and lowering
operators are, respectively, V3(E,, + E;3) and
\/§(E2,1 + E;,). The symmetry (2, 1) provides two
SU@) [SO(3)] octets. To irreducibly decompose each
of these SO(3) octets, we must use trace extraction.
Denoting the spherical metric by M,; and using
M, = M, and 3; M;;M’* = 6%, we have for the first
octet
(PQ)ii,kTiJ'k = (PQ)z':',k(Tijk)o + 2Mi:i(TZ - Tllc)o
al(T5 = T3)° — M (T} — T3,
(PQ)ix,i Tixs = (PQ)ik,J'(Tijk)o - MU(TI:: - Tl:)o
+ 2Mik(T? - T})O - Mjk(T? - Ti’)o,
and for the second octet
(PQ)if,kTik:‘ = (PQ)H,k(Tz'kj)o + 2Mi.’i(T12c - Tzlf)o
- Mz'lc(T? - T%’)o - Mjk(T? - T%)Os
(PQ)ik,jTiJ'k = (PQ)ik,j(Tijk)O + 2Mik(T§ - Ti')o
— M (T} = T — M(T;; — T}),
where (T9)° — (T?)° = (T — T)° was used.
We can recouple these to obtain two octets which

are orthogonal to each other. Adding corresponding
states of the two octets above yields

(PQ)u,k(Tﬁk + Tup)
= (PQ)ij,k(T;'ik + T,-kj)° + 2Mn‘(T: + Tl2c - 2T11c)0
— M(T5+ T5—2T)° — M(T{ + T; — 2TD",
4.1)

(PQ)ise, {Tze; + Tia)
= (PQ):'k,i(Tiki + Tia’k)o - Mi:i(TZ + T12c - 2T11c)0
+ 2M (TS + TG — 2T — Mu(T§ + T — 2T,
4.2)
where (7;;)° + (T = (Tize + Tay)° Was used.

TOMPKINS

Subtracting corresponding states of the two initial
octets yields the second octet, which is easily seen to be
orthogonal to that of Eqgs. (4.1) and (4.2). If the
symmetrized trace is viewed from SO(3) rather than
8y, then Eqgs. (4.1) and (4.2) describe one rather than
three symmetrized traces. This is equivalent to viewing
the symmetrized trace in the traditional way rather
than by extended symmetrization. Equations (4.1)
and (4.2) yield the trace equation

2 MH(PQ)i; (T + Tyep) = —2T5 + T5 — 2TY)".

ik
Because the indices carrying the transformation
properties also characterize the inner product structure
within such a subspace and because the self-represen-
tation of SO(3) is orthogonal, we know the resulting
SO(3) triplet is orthogonal. Using subscripts +1, 0,
—1 to indicate weights and using ~ because equality
may be off by normalization, we have
A% = (T3 + T = 2T = (V1Y)

X (Tuz + Thas + Toms + Toae — 2T — 2Th,9),

A= (T3 + T3 — 2TH° = 1NV12)

X (—Thes — Thge — Tope — Tomn + 2Tong + 2Tom),
Ay = (TS + T} — 2T = (1IN12)

X (Toes + Tase + Tos + Targ — 2Thss — 2Tig0)
By subtracting off the symmetrized trace, we obtain a
quintet which is orthogonal, since all weights of SO(3)
are simple. The quintet is
Aiz = (PQ)u,z(Tnz + T121)0

= (1\/6) (T + T — 2To),

A%y = (PQuo(Tis + Tia))°
2= (1//12)(Tyys — 2Topy + Tam + 2The
- T212 - T221),

Ag = (PQ)12a(Ties + Ths2)°
> (Tios + Thge — Taoy — T,

= (PQ)a2 5(Tyes + Tos)’
= (”\/ﬁ)(Tzza — 2Ty + 2Tha3
— Tas — Tz + Tosn)s

A%, = (PQ)za,s(Tzss + Tys)°
= (1/\/3) (2T — Toe — T3,).
The (tensor) phase of the states is such that all
elements of the triplet and quintet raising operators
are real and positive. Independent state selection is

aided by using the traceless conditions. Describing a
second-rank SO(3) quintet { Y} and singlet {T'} with

A%,
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the notation ~
Y@ = AND(Ty + Tp) G o#)),
Y(1n)° = (1/\/6)(2T11 + Tos — Tyy),
Y(22) = (IN6)2Ts + Ty + T,
T= (1/\/3)(—Tl1 + Toe — Ts),
we find
A= (VD2 RY(13 — ) THE Y11 = /3T)
— HTLEEYRD + J3T) + JZ LY (12)°].
It turns out that this is as close as we can get to
writing A3, in terms of simply-coupled irreducible
representations (a form involving the product of only
two lower-rank irreducible representations). This
illustrates how trace extraction can conflict with
simple coupling. This conflict occurs because we want
simply to couple irreducible, rather than merely
symmetrized, tensors. Denoting the second-rank
triplet by Z(if)°, we find that the triplet
BL =(T7 - T
=~ 3Ty — Thsr + Toor — Tire)s
=(T; - T3
= HThgs — Thse + Tom —
B, =(T} - T
= H(Toos — Tosa + Tsar — Tina)
has the simply coupled form
BY, = (1/yDITZ(13)° + T,Z(21)],
By = (1/3TZ(23)° — T,Z(21)°],
B, = (1/y2ITZ(23)° + T,Z(31)’].
This simple coupling resulted because Z(ij) = Z(ij)".

Bg
T312) ’

Example 2
This example illustrates the minimal coupling
obtained by extracting symmetrized traces in steps.
Using G; = §;; and writing
Tz = (Thijk)o + 5}11‘[(7%)0 + 5a‘kT34]
+ 0T + 05T + 0,[(TT) + 6,7
+ 0uUTh° + 0 T™] + 8,[(T5)° + 0, T
+ 04l(T3D)° + 6, T,
we find
(PQ)hz‘,jkThijk = (PQ)hi,;‘k(Thijk)o + 20y
= 0i¥me — O — Oy — On¥is + 0¥,
(P Q)hj_ikThJ'ik = (P Q);'h,ik(ThJ'ik)O + 2[0nwa — Oni¥in
= Om¥ii — 0¥ — O + 0u¥ns);
where, using [ab]"" = [(T5")° + 6,,T™"], we wrote
Yy = 1 + [P = [ — [i]® — (5]
_ [ji]“ + [fj]m + [ji]lz.

“TRACE” OPERATIONS 7

Using n-dimensional indices we obtain the sym-
metrized trace equation

Zhéih(PQ)hi,ikThijk = (2n — 8)yyy.

By subtraction we evaluate the symmetrized traceless
tensor {(PQ)n; jal i) (P Oy Trjn)*}- It is necessary
to carry out one further step of symmetrized trace
extraction. For Young pattern (2) we have

I :
(PQ)J'k, (211———8_) Zk 6 h(PQ)hi,:ikThijk
= (PO (Ti+ T — Th — T35 — Ty — T3
+ T}?c + T}t? 0 + 26jk(T34 . T23 _ T14 + T12)’
which yields the trace equation

1 ; ;
e oo z 6Jk(PQ)jk, E 3 h(PQ)hi,jkThi:ik
n(2n — 8) 7% in
= 2(T34 - T23 — T14 + le).
By subtraction we obtain the symmetrized traceless
tensor

(PQu(Th + Tiy — TR — T3

14 14
—Typ—T

E)

1 1 i it

= on (1 - Z é k) (PQ)J'k, Z d h(PQ)hz‘,:ikTth-
(2n —8) n ik in

This completes the symmetrized trace extractions

because for Young pattern (1, 1) we find

(PQ):i,k Zh: aih(PQ)m',J'kThijk = 0.

If instead we had removed both of these traces
initially, then we would have obtained a pair of
coupled equations.

5. DISCUSSION

Both the initial symmetrization and trace extraction
are achieved by solving the symmetrized trace
equations. The initial symmetrization accomplishes
two objectives: first, it gives the traceless tensors of rank
r (the rank of the original tensor) their final symmetry;
and second, it decouples trace extraction into sym-
metrized trace extractions. For each lower-rank (less
than r) traceless tensor a second symmetrization
(without trace extraction) yields the final symmetry
partition. Extracting the different rank traces in
separate steps, each accompanied by symmetrization,
makes maximal use of the decoupling provided by
symmetrization.

The problem of obtaining an orthogonal decom-
position with symmetrized trace extraction based on
either unitary representation Wigner projection
operators or Young symmetrizers was described in
detail.

TR+ T
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The visibly simple symmetry properties due to the
use of Young symmetrizers simplify some calculations.
This is especially true when using PQ(QP) sym-
metrizers with an antisymmetric (symmetric) metric
tensor.

Note Added in Proof: To remove an oversight in the
proof of Eq. (3.2) of Ref. 6, we reconsider the result

(T, .,-,' (U;U)Tle...j,.> = 6gv<Til . ,-,l le...j,>-

i
The reason for using i, * - - /. and j, - - - j,, rather than
iy - - - i, on both sides, is to allow the two sides of the
inner product to have different sets of index values.
(If the sets of index values coincide, then we must have
iy =j,--,i, =j.) The proof in Ref. 6 used the
fact that if the tensor was orthogonal; and if all indices

JOURNAL OF MATHEMATICAL PHYSICS
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have different values, then we get zero unless g = v
because then only
(Tyy oo | DAL

gy e

i)

cancontribute. If the rank exceeds the space dimension,
then no component T, ...:(Ts, ... ;) appears with
all indices having different values. To extend the proof
to this situation we note that we can embed such a
tensor in another tensor of the same rank but on a
space of arbitrary dimension »’. When n’ > r, the
theorem clearly holds for the embedding tensor.
The operations of S, are here fundamentally on index
position rather than index value and so are not
affected by the embedding. Hence the theorem must
also hold for the embedded tensor.
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In this paper we develop in detail a unified method, referred to as the Related First Integral Theorem,
for obtaining “derived” first integrals (i.e., constants of the motion) of mass-pole test particles with
geodesic trajectories in a Riemannian space. By this method, which is based upon a process of Lie
differentiation, additional conservation laws in the form of mth order first integrals can be generated
from a given mth order first integral (conservation law), provided the space admits symmetries in the
form of continuous groups of projective collineations (which include affine collineations and motions as
special cases). We give in tensor form a reformulation of the well-known Poisson’s theorem on constants
of the motion for particles with geodesic trajectories. We then show for this class of trajectories that, as
a method for generating mth order first integrals from a given mth order first integral, Poisson’s
theorem is a special case of the Related First Integral Theorem. It is also shown that dependency rela-
tions between generically related first integrals obtained by the Related First Integral Theorem are
expressible in terms of the structure constants of the underlying continuous group of symmetries.

1. INTRODUCTION

It is generally recognized that the knowledge of
conservation laws is of fundamental importance in
the physical description of nature. It has also been
observed that the existence of certain geometric
symmetries described by continuous groups of motions
or collineations lead to conservation laws expressible
in the form of first integrals (i.e., constants of motion)
of a dynamical system.

In this paper, we wish to consider the mth order
first integrals (mFI) of dynamical systems whose

* This work was supported by a National Science Foundation
Grant No. GP 6876.

trajectories are geodesics in a Riemannian space V,,.
This class of trajectories is of particular importance
in the general theory of relativity in that it includes
the description of the motion of mass-pole test
particles.

The geodesics are solutions of the equations!

Dy _dp d

i j .k i —
= . =0, =—), (1.1
ds ds + {Jk}p P (p dS) (1

where the parameter s represents arclength and { by
are the Christoffel symbols. These geodesics will admit

1 Latin indices take on values 1, 2, -+ -, n; and Greek indices take
on values 1, 2, - - -, r. The Einstein summation convention is used.
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from a given mth order first integral (conservation law), provided the space admits symmetries in the
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special cases). We give in tensor form a reformulation of the well-known Poisson’s theorem on constants
of the motion for particles with geodesic trajectories. We then show for this class of trajectories that, as
a method for generating mth order first integrals from a given mth order first integral, Poisson’s
theorem is a special case of the Related First Integral Theorem. It is also shown that dependency rela-
tions between generically related first integrals obtained by the Related First Integral Theorem are
expressible in terms of the structure constants of the underlying continuous group of symmetries.

1. INTRODUCTION

It is generally recognized that the knowledge of
conservation laws is of fundamental importance in
the physical description of nature. It has also been
observed that the existence of certain geometric
symmetries described by continuous groups of motions
or collineations lead to conservation laws expressible
in the form of first integrals (i.e., constants of motion)
of a dynamical system.

In this paper, we wish to consider the mth order
first integrals (mFI) of dynamical systems whose

* This work was supported by a National Science Foundation
Grant No. GP 6876.

trajectories are geodesics in a Riemannian space V,,.
This class of trajectories is of particular importance
in the general theory of relativity in that it includes
the description of the motion of mass-pole test
particles.

The geodesics are solutions of the equations!

Dy _dp d

i j .k i —
= . =0, =—), (1.1
ds ds + {Jk}p P (p dS) (1
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on values 1, 2, - - -, r. The Einstein summation convention is used.
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an mth order first integral (mFI)

Ay p* - pm =k = const (1.2)

(where 4, ..., is completely symmetric on all
indices), if and only if?

P{Ailiz s im;im+l} = 0 (1.3)

(see Ref. 3, p. 84).

It is well known that if a ¥, admits symmetries in
the form of motions, then the geodesics admit linear
first integrals (LFI) and conversely (see Ref. 4, p. 128
and Chap. VL. For a review of the physical interpre-
tation of these LFI see Ref. 5.)

In a recent physics paper largely devoted to the study
of particle conservation laws in general relativity,
Davis and Moss® pointed out that infinitesimal pro-
jective and affine collineations admitted by a ¥, lead
to quadratic first integrals (QFI) of the geodesics.
They thus established that geometric symmetries
(other than motions) in the form of collineations lead
to additional conservation laws.?

In the present paper we extend this work of Davis
and Moss® by means of the Related First Integral
Theorem (RIT) to be proved in Secs. 3 and 4. This
theorem provides a unifying method for obtaining
conservation laws associated with symmetries defined
by collineations, and in addition gives a geometric
explanation of why the existence of certain mFI is
to be associated with projective and affine collineations.

It is shown that if a ¥, admits a group of projective
or affine collineations, or motions, and if, in additton,
the space admits an mFI, then, in general, the geodesics
admit additional mFI which can be derived by a
process of Lie differentiation with respect to the
generating vectors of the stated symmetry group.

By applying the RIT to generate QFI in a V,, we
obtain the QFI found by Davis and Moss.® Moreover,
by use of this theorem, additional QFI can in general
be generated, showing that more than one linearly
independent QFI may be associated with each col-
lineation. In this way, by systematic application of the

2 Covariant differentiation is indicated by a semicolon (;), and
partial differentiation by a comma (,). The symbol P{ } indicates the
sum of the terms obtained by forming all cyclic permutations of the
indices that are not summed completely within the braces. For
example,

Pldy b = (Aijye + Asps + A )V,

Pld;pd7} = (i + A DA

whereas

3 L. P. Eisenhart, Non-Riemannian Geometry (American Mathe-
matical Society Publications, No. 8, New York, 1927).

4L. P. Eisenhart, Riemannian Geometry (Princeton University
Press, Princeton, New Jersey, 1926).

5 W. R. Davis and G. H. Katzin, Am. J. Phys, 30, 750 (1962).

8 W. R. Davis and M. K. Moss, Nuovo Cimento 38, 1558 (1965).

7 They also indicated that, under certain circumstances, projective
collineations would lead to higher-order first integrals.

RIT in a V,, a sequence of mFI for any m can, in
general, be generated (which we anticipate will lead
to new conservation laws of physical significance).

As a means of examining the linear independence
of the sequence of derived integrals generated by the
RIT, we derive in Sec. 5 dependency relations involv-
ing the structure constants of the underlying group of
symmetries.

An earlier well-known method for obtaining first
integrals is given by Poisson’s theorem on constants
of the motion. We derive in tensor form a restatement
of Poisson’s theorem for mass particles with geodesic
trajectories. We then compare Poisson’s theorem
with the RIT as methods for generating mFI from
a given mFI, and show that (for geodesic trajectories)
Poisson’s theorem may be considered as a special
case of the RIT.

Although in this paper we are mainly concerned
with the mathematical development of the RIT, we
give several examples of physical interest.

To achieve mathematical generality, much of the
work presented in this paper is based on affine spaces
A, which include the Riemannian spaces V, as special
cases. For an 4,, Eq. (1.1} defines the “paths” of
the space, provided the Christoffel symbols, {}} are
replaced by the symmetric components of affine
connection I'}, and s is taken to be a path parameter.

2. COLLINEATIONS AND MOTIONS

By definition, a projective collineation is a point
transformation which transforms paths into paths.

The condition that the point transformation
X = x' + &(x)ot (2.1)

(where d¢ is considered an infinitesimal) defines an
infinitesimal projective collineation is expressible in
terms of the Lie derivative®-? with respect to the vector

fi in the form!¢
; ( )
ds

It follows from (2.2) (see Ref. 10, p. 454 or Ref. 3,
p. 126) that an A, admits an r-parameter group of
proper projective collineations if

(,:z);if = E(";)Bi’;k + 6?‘#(1)1’ + 6:L¢(a):i’

where the r linearly independent vectors &}, generate
the group, the ¢,), is a set of r vectors at least one

(2.2)

(2.3)

8K. Yano, The Theory of Lie Derivatives and Its Applications
(North-Holland Publishing Company, Amsterdam, 1957).

?J. A. Schouten, Ricci-Calculus (Springer-Verlag, Berlin, 1954),
2nd ed.

10 K. Yano, K. Takano, and Y. Tomonaga, Japan. J. Math. 19,
433 (1948).



10 G. KATZIN AND J. LEVINE

of which is not zero, and the B}, are the curvature
tensor components (see Ref. 3, p. 8).

For the case in which all ¢, = 0 in (2.3), the
corresponding set of vectors &}, is said to define an
r-parameter group of affine collineations.

A V, is said to admit an r-parameter group of
motions generated by the r vectors &, if Killing’s
equations &(,);.; + &;,; = 0 are satisfied where
$it) = 8us6l,) (see Ref. 4, p. 234). In this case, it
follows that (2.3) with ¢,), = 0 must be satisfied as
integrability conditions (see Ref. 4, p. 237).

An affine collineation will be called proper if it is
not a motion. (This, of course, applies only to V,,
spaces.)

Notation: We denote by PC,, AC,, and M, an
r-parameter group of proper projective collineations,
proper affine collineations, and motions, respectively,
generated by the r vectors &), (x = 1,2, ,r).

An affine space 4, will be called an 4% space if its
affine Ricci tensor is symmetric, i.e., B;; = B;;,
where B,; = B,,. We are mainly concerned with
collineations in A% spaces (which include V, spaces
as special cases).

Assume now that an A admits a PC,. It follows
from Ref. 3 [Eq. (46.8)] and the symmetry of B,
that vectors ¢, in Eq. (2.3) are gradients defined by
biari = Prs With scalar ¢, defined by

¢(a) = (n + 1)_1 ?u);i' (24)

It is known that, under projective collineations in
A? spaces, the pathparameters s and §(,) along corre-
sponding paths are related by (Ref. 3, p. 107)

dj(a) = 92¢‘¢)+c dS,
where c is an arbitrary constant.
In the case of an infinitesimal projective collineation,
we may write

dj(a) = ds + (2¢(a) -+ C) dsot.

3. DERIVATION OF THE RELATED FIRST
INTEGRAL THEOREM

Let us assume that the paths (1.1) of an 47 admit
an mFI (1.2), and in addition the 4% admits a PC,.

As a result of a collineation transformation, the
mF1I (1.2) is “dragged along” in the sense of Schouten
(see Ref. 9, p. 102) as paths transform into paths. The
mFI is deformed by this process and takes the form

i
i’f—), 3.1)

Sta)

(2.5)

(2.6)

(A i (NPl Bl = K (Pia) =

where
t,

(A-il"'im)ai’:tlx) o P:a'z") = Ail..‘impil' -epm

+ £,(4y, .. ppot (3.2)

and
k, =k + (£ k)dt,
where £, = £,,.
It therefore follows by Egs. (3.2), (3.3), and (1.2)
that the deformed mFI (3.1) can be expressed as

(3.3)

£.(4 phtce ') = Lok (34

If Eq. (3.4) is expanded, there results
(EaAil"'im)pil [P pim — MAil' . i,,,pil PP pim—l
x (£,p'™) = L,k. (3.5)

From Ref. 8, p. 89, we know that

0p = —p =L, (3.6)
ds
From the definition
£,ds = limM
st»0 Ot
and Eq. (2.6), we find that
£.ds = Qe + ) ds. 3.7

Substitution from Eqgs. (3.6) and (3.7) into Eq.
(3.5) and use of (1.2) gives

[(E.Aiy. i) — 2my Ay 1P P
= cmk + L.k = k. (3.8)

Since (£,k)d¢ represents the change in k induced by
an infinitesimal point transformation of the form
(2.1), we may consider £k expressible in the form
£k = fi(k), and hence £,k may be considered as a
constant along a path. Thus, the right side of (3.8) is
constant along a path, and hence the left side of
(3.8) defines an mFI of the paths which is generically
related to the original mFI (1.2).

In the following section, we give an alternate proof
that the left side of (3.8) defines an mFI.

4. ALTERNATE PROOF

Define
Ayy iy = LoAiy iy — 2mépAy, .., (4.1)
We show that
P{Awyiy - ipsian) = 0 (4.2)
which, by Eq. (1.3), will prove that
Afyiy i, P = const (4.3)

is an mFI of the paths (1.1) of an A47},.
From (4.1) and the left side of (4.2), we obtain, by
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use of (1.3),
P{A(l)il e im;im+1}

= P{Ail-'-im;jimugga) + Ail--~im; jf(ja);i,,.ﬂ

3
T im§im+1£(a);ih

m
+ z Ail creip—rdinen
h=1

j
LR im'f(a):ihz',ﬁl

m
+EA2'1 srrdpoting

h=1

— 2myi, Ay ippe (44)

In Eq. (4.4), we note the right-hand side contains a
sum of (m + 1)? terms which add to zero by (1.3).
As a consequence, we can write (4.4) in the form

P{A(:!)il v im‘,im+1}

m

— 7 J

= P Ail il Ylf(a) +]21Ai1 vecdpadip el imf(i)ihimn
—

—_ 2m¢o(a);,im“Ai1...im . (45)
Employing the Ricci identity
Ail o imidimtn
= Aix g ) + )ZIAH ceripeikiper 'imBi);iimH ’
(4.6)

we substitute for the first term on the right-hand side
of (4.5) and obtain

P{A(a)il e

: im:im+1}

m
— i
- P{Aix T im',imﬂié:(a) +hzlAi1 B E L7 ES I P

J
+ Einimer) = 2MPiarin i il

(4.7)

The first term on the right-hand side of (4.7) vanishes
by (1.3), and by (2.3) the second covariant derivatives
of &7,, can be eliminated from the remaining terms.
The resulting expression can be reduced to

E i
X (5(1) fhkimﬂ

P{A(a)ix v im;im+1} =P mAil O 'im¢(u);im+1
+ z Aix s iy timeptfhel imqs(a);ih
h=1
- 2m¢(rx);im+1Ai1 i, (4'8)
Finally, if the right-hand side of (4.8) be expanded
by permuting indices as indicated, we obtain (4.2).

We may thus state the theorem to follow.

Theorem 4.1 (Related First Integral Theorem): If
an affine space A* admits a PC, (group of proper
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projective collineations), and if the paths of the A7
admit an mFl (mth order first integral) (1.2), then
the paths will admit the r additional mFI

A(a)ilu'impil T (a=1,"--,r), (49)
;, is defined by (4.1).

p'™ = const,

where A, ...

Corollary 4.1: If a space A, admits an AC, (group
of proper affine collineations) and an mFI (1.2), then
the 4, will admit the r additional mFI (4.9), where
Ay, ..., is defined by (4.1) with all ¢y =0.
Theorem 4.1 also holds for a V,, admitting a PC,, an
AC,, or an M, (motions).

In Corollary 4.1, with the case of a V,, admitting
a PC, and where 4,; = g,; (the components of the
metric tensor) and m = 2, the quadratic first integrals
(C.g:; — 4Pgi)p'p’ = const [given by (4.1)] have
been obtained by Davis and Moss® in a slightly
different notation.

Definition: Integrals (4.9) will be called “first
derived integrals” with respect to the integral (1.2).
In a like manner kth derived first integrals can be
obtained with respect to (k — 1)-derived integrals, for
k=1,2,3, . Dependency relations between such
derived integrals are considered in the section to
follow. Examples of such integrals are given in Sec. 9.

5. DEPENDENCY RELATIONS BETWEEN
DERIVED INTEGRALS

Let an A} satisfy the conditions of Theorem 4.1
and define the second derived integral coefficient

Ay i = YAy i, — 2mb A, i, (5D

with A, ...; defined by (4.1). It follows from Eq.
(4.1) that

A(ﬂa)i1-~'im — A(zﬁ)il gy T (Eﬂﬁa - tagﬂ)Ail IR

- 2m(Lpdbay — Ladbp) i, i, - (5.2)
From Ref. 8, pp. 29 and 35, we can write
Lo, — 0L = ChL,, (5.3)

where Cj are the structure constants of the PC,
admitted by the 4%.

By the use of Egs. (2.4), (5.3), and the Ricci identity,
we can write Eq. (5.2) in the form

A(ﬁa)i. cedy T A(tzﬂ)il feiy
= LA — ;2—4’_’-’—1(@,53‘“,);,.}1,-,‘..%. (5.4)
It follows (Ref. 8, p. 29) that
A(Ba)il---im - A(aﬂ)il'-~i,,,
= ChLlC, 4, ...;, — 2m,y A, ..., ]
= ChAmiy -, - (5.5)
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If the extreme sides of Eq. (5.5) be multiplied by
pir- -+ p'» (and summed), the resulting equation may
be expressed in the form

(5.6)

where k), k(g are the respective constants of motion
defined by the mF1

A(z)[l...impil . .pim,
We can thus state:

k(ﬂa) - k(aﬁ) = C};ak(y),

A(aﬂ)h« P LR

Theorem 5.1: If an A% admits a PC, and an mFI
(1.2), then the first and second derived integrals based
on (1.2) satisfy a linear dependence relation of the
form (5.5), and the corresponding constants of the
motion satisfy (5.6).

Corollary 5.1: If an A, admits an AC, and an mFI,
then dependency relations (5.5) and (5.6) hold with
¢ = 0. If a V, admits a PC,, or an AC,, or an M,,,
and also an mFI, then (5.5) and (5.6) hold.

We now consider some special types of dependence
relationsina V. If, in Corollary 4.1 for a ¥, admitting
an M, (motions), we take A;; = g;;, we immediately
have that A4, = £,g,; = 0. (£, of course refers to
vector &, of the motion.) We thus see that the first
derived integrals, and hence those of all orders, are
identically zero in this instance.

Consider again the above ¥V, admitting an M,.
From the fact that &, satisfy Killing’s equation it
follows that &,,,p* = L, are linear first integrals. By
Ref. 8, p. 29, we have that the first derived integrals
ECpéip’ = C3,(&)pY) = CL,. 1t follows that all
derived integrals based on the L, are linearly dependent
on these L, . It also follows that derived integrals based
on mFI which are products of the L,’s will be linearly
dependent on these products. (For examples of mFI
expressible as products of LFI, see Ref. 11.)

Finally, consider a V¥, admitting an AC,. Based on
the fundamental quadratic first integral g, p'p’, we
form the first derived integral with coefficients

A (2is 5.7

Next, form the second derived integral with coeffi-
cients

= ’:agia‘ = S(a)i;i + E(a):’;i‘

Agaris = Lphwi = Lléwmiy + E@sd (5.8)

By Ref. 8, p. 16, we can interchange the order of Lie

differentiation and covariant differentiation to obtain
A(ﬁa)ij = (ﬁﬂé(a)i);j + (L‘ﬂé(a)j);i = C/}'a[g(y)i;i + 5(7).7‘;1‘]

= C;aA(a)ii' (59)

11 G, H. Katzin and J. Levine, Tensor, New Series, 16, 97 (1965);
G. H. Katzin, J. Levine, and J. Halsey, ibid, 18, 32 (1967).

This may also be expressed as A, = LL,8,; =
C},(£,8:,)- This gives us the theorem:

Theorem 5.2: If a V, admits an AC,, the second
(and higher-order) derived integrals based on the
fundamental quadratic first integral g,;p’p? are linearly
dependent on the first derived integrals.

In general, a similar result for V,, admitting a PC,
will not hold for the dependence of second-derived
on first-derived integrals (see Sec. 9).

6. COMPARISON WITH POISSON’S
THEOREM

In this section we consider relations between
Poisson’s theorem on constants of motion and the
Related First Integral Theorem.

The well-known Poisson’s theorem!*'3 states that
if U and V are constants of the motion of a trajectory
of a dynamical system, then the Poisson bracket
[U, V] = W is also a constant of the motion.

Let us now consider the formulation of Poisson’s
theorem for mass particles with geodesic trajectories
in a V,. Assume then that a V, admits an mFI and
a gFI given, respectively, by

Az’yni,,.p“ PR pimE Ail...i,,,pil e pim = U(x", pk)a
{6.1)
Bil . -i,,P“ “ e piq = Bi), .. -iqpil. . ‘Piq = V(xi’ plc)’
(6.2)
where
Pi = &P’ (6.3)
In the Poisson bracket
UV dU oV

uvVisd|l—m———— , 6.4
v, v kgl (Bxk op, Op; ax") (64)

we substitute for U and V from Eqgs. (6.1) and (6.2)
and obtain

aAil.uoim . .
U’ V = _— Bk7m+l"'1m+q—1
[U, V] (q -
3Bk

AP
where the complete symmetry of 4™ "*m and B*1" "%
on all their respective indices has been used.

By use of the definition of covariant derivative, the
partial derivatives in (6.5) can be replaced to give the
following explicit tensor formulation of the Poisson

Akiq+1 .. .im+a—l) pil . pim+q_.1 , (6.5)

12 H. Goldstein, Classical Mechanics (Addison-Wesley Publishing
Company, Inc., Reading, Mass., 1953), Chap. VIIIL.

18 E, T. Whittaker, Analytical Dynamics of Particles (Cambridge
University Press, London, 1964), 4th ed.
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bracket:
[U, V] = (qA’i v 'imBkim+l. N

i1+ ig Akiger1 -1 -1
— mBj; A4 mret)py Dingr-

(6.6)

We note that the constants of motion W = [U, V] as
given by the right side of (6.6) are of orderm + g — 1.

The above results, which we consider as a new
formulation of Poisson’s theorem for first integrals
of geodesic motion, can be stated as follows:

Theorem 6.1: If the geodesics of a V,, admit the
mFI (6.1) and the gFI (6.2), then the first integral
defined by the Poisson bracket (6.4) is of order
m + g — 1 and is expressible in the tensor form (6.6).

It is observed that the order m + g — 1 as given by
Theorem 6.1 is, in general, greater than the orders m
or g of cither of the original first integrals. However,
the derived first integrals as given by the RIT are
always of the same order as the original integral (see
Theorem 4.1). Thus, in order to compare the two
theorems as methods for generating first integrals
(of geodesics) of order m from a given first integral
of order m, we take ¢ = 1 in Theorem 6.1.

We therefore consider a V/,, which admits an M, of
motions. The geodesics then admit LFI (g = 1),

Eil' = ElyPi = Biyp; = Vi - (6.7)

In addition, assume the geodesics admit an mFI
(1.2), which we express in the form (6.1).

If in (6.6) with V' replaced by ¥, and with g = 1,
we make use of the skew symmetry of £,,.; in i and
j (due to Killing’s equation; see Sec. 2), then it is
found that (6.6) is expressible in the form

[Ua Va] = (Ail"‘im;kgl(ca)

+]21Ai1~-'i;,._1ki;,+; e imszca);i,,) Pil' v Pi"‘- (6.8)
In terms of the Lie derivative, (6.8) can be written
[U’ Va] = (E'aLAil . ~im)pi1 e pi,,,_ (69)

From Theorem 4.1, it is seen that the right side of
(6.9) is an mFI of the geodesics. Hence we can state
the following theorem:

Theorem 6.2: If a V', admits a group M, of motions
[so that the V, admits the LFI (6.7)] and an mFI
(6.1), then the first integrals generated by the Poisson
brackets (6.6) with g = 1 are of order m and are
identical with the first derived integrals obtained by
the Related First Integral Theorem using the mFI

(6.1) and with Lie differentiation taken with respect
to the vectors &, of the M, of motions.

If a ¥, admits a PC, or an AC, of collineations and
an mFI, then the RIT will generate additional mFI,
in general not obtainable by Poisson’s Theorem 6.1.
Hence it follows that Poisson’s theorem with g = 1
may be considered as a special case of the RIT.
However, if ¢ > 1, m > 1, then Poisson’s theorem
may be regarded as another method, distinct from
the RIT, for obtaining additional first integrals.

7. SPECIAL FIRST INTEGRALS
The integral (1.2) is called a special first integral# if
A = 0. (7.1

T imiimt
Assume an 4, admits an AC, and also a special mFI.
From the results of Sec. 4, we obtain the derived
integrals (4.9), where

A(a)z‘l--'i,,, = S:'aA' REE e

i .

(7.2)

and 4, ..., satisfies (7.1).

Since we are dealing with an 4C,, it follows that
Lie differentiation and covariant differentiation com-
mute (see Ref. 8, p. 16); hence from (7.2) we may write

Ay - =L,(4,. )=0. (7.3)

It follows that the first derived integrals will also be
special integrals, and thus, this will likewise be true
for all higher-order derived integrals. We may then
state the following theorem:

*initmtl CrimiTmt

Theorem 7.1: 1f the paths of an 4, admit a special
mFI (1.2), and if the A4, admits an AC,, then all
derived mFI A, .4 ...c p" " p™™ = const (k =
1,2, ) are also special.

8. DERIVED (m — 1)FI OBTAINED FROM mFI

Here we assume the paths of an 4, admit the mFI
(1.2), and also that the 4,, admits a vector A? such that

Y P B L

m™m

+zAil"'ih——ljih+1"'imz;i'h - 0 (81)

h=1

If the > term in (8.1) is replaced by its equivalent

m
E )
]zl[(Ail ERRE O T AW 'im}‘ );ih - Ail s dpofiper 'im;ih}“ I
=

and (1.3) is used, then (8.1) can be expressed as

m

’El(Ail cevdpydipart e im}'i);ih + 2A11 - im;jlj = 0. (8.2)

14 For additional information on special QFI, see our paper “On
the Number of Special Quadratic First Integrals in Affinely Connected
and Riemannian Spaces,” Tensor, New Series, 19 (1968).
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Since 4, ...; is completely symmetric, we can
define another completely symmetric tensor of order
m—1by

Bii = Ay M. (8.3)

IPRERT 15

By use of (8.3), we express (8.2) in the form
P{Biliz"'im—l;im} + 2A1'1" 'i,,,;jlj: 0. (8.4)

Now if the second term on the left side of (8.4)
vanishes, then (8.4) reduces to the necessary and suffi-
cient conditions for the existence of an (m — 1)FIL
Hence we have the following: '

Theorem 8.1: If the paths of an 4, admit the mFI
(1.2), and if the 4,, admits a vector A such that

A H=0
11 tm»?

and
£A4,....,. =0,

LR

then the 4, will admit an (m — 1)FI given by

Pil P P'im—l = Const,

i3 im—1

where B, ...; is defined by (8.3).

9. ILLUSTRATIONS OF THE RELATED
FIRST INTEGRAL THEOREM
In this section, we illustrate the various theorems
obtained above.

Example 1: To illustrate the Related First Integral
Theorem, consider the ¥, of Minkowski space-time
of special relativity with metric

ds? = —(dx')? — (dx¥)? — (dx®)? + (dx**. (9.1)

From Ref. 3, p. 127, it is known that this V|
admits a 24-parameter group G,, generated by the
vectors

& = ax"x" + bix" + ¢, (9.2)
which include a PC,, an AC,q, and an M,

Let us assume a particle with rest mass m, moves
along a geodesic in this space-time. It is well known®
that there exists a set of 10 LFI associated with the
motion of this particle. We select from this set the LFI
which describes the constancy of linear momentum
in the x! direction:

(9.3)

We take for a projective collineation vector and
related scalar,

A;p' = myp' = const, (A4, = my9)).

¢(2) = xz, (9.4)

obtained from (9.2) and (2.4), respectively, [with
a; = 63,bi=0,c =0in (9.2)].

i 1,2
5(2) = x'x s

If we substitute from (9.3) and (9.4) into (4.1), we

obtain the first-derived LFI (4.3) in the form

Ay pt = my(xp? — x%p*) = const. (9.5)

It is observed that this derived integral infers the

constancy of angular momentum of the particle about
the x® axis.

In a similar manner, we can obtain as derived LFI
all six LFI associated with the 6-parameter homoge-
neous Lorentz group by starting with the four LFI
associated with the 4-parameter translation group.

Example 2: We again consider the Minkowski ¥V,
[Eq. (9.1)] and the G, defined by Eq. (9.2). The
vector &}, = x'x* obtained from Eq. (9.2) gives a
projective collineation with ¢, = x*. In Eq. (1.2),
we take m =2 and A4,; = g,; as determined from
(9.1), so that (1.2) is the quadratic first integral

A p'pt = —(p')? — (p?)? — (P + (p*)* = const.
(9.6)

From Theorem 4.1, we calculate the first derived
integral (4.9) using (4.1), and obtain

Awup'p’ = (C1gi — 4w ga)p’p’
i 2[x1(p2)2 + xl(P3)2 —_ xl(P4)2 — xZPIPZ
— x3plp3 + xdplpll]' (97)
The second derived integral is calculated to be

Aanup'p’ = Gday; — 4 AP’
= 2{[— (% — (x** + (x)’I(p")?
—_ (xl)Z(p2)2 —_ (xl)z(p3)2 + (x1)2(p4)2
+ 2x1x2p1P2 + 2x1x3plpa —_ 2x1x4plp4}.
(9.8)

The third (and consequently all higher-order)
derived integrals (derived from use of &f;)) turn out
to be identically zero. By inspection, it can be seen
that the three quadratic first integrals [Egs. (9.6)-(9.8)]
are linearly independent.

It is easily shown that the above derived QFI
[Egs. (9.7) and (9.8)] are expressible as sums of prod-
ucts of the LFI admitted by the V, defined by Eq.
(9.1). This fact is a consequence of a known property
of V, spaces of constant curvature (see Ref. 11).
However, this property will not hold in general in
V., spaces not of constant curvature. This is illustrated
in Example 3.

Example 3: We consider the V, (of nonconstant
curvature) defined by
2

2
ds® = AN dx? Y

— d 2’
o+ 1
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where we are now using the notation x! = x, x¥ = y.
It is known (by Levine') that this V, admits a G,
defined by contravariant vectors

5(1) = (1’0), 5(2) = (X,y),

where &, defines a motion, and & a proper pro-
jective collineation.
Corresponding to &, , we calculate scalar ¢,) to be

by = 0+ D30 + 1).

Based on the fundamental quadratic first integral

(9.9)

gijpipj = Az‘jpipj

=y =L (=4, (9.10)
V41 P+

we calculate the following derived integrals:
A PP’ = (LA;; — 460 Ai)P'P’

2)°0* —2) e 4y* 212
= _—— = Ay,
3(y2 + 1)2 (p) 3(y2 + 1)2 (p) (2)
(9.11)
A(z.z)ijl’ipj = (LyAey; — 4¢(2)A(2)ii)Pin
4P+ 4 1 16y 2,2
= ———— + —— = A .
50" + 17 (r) 50 + 17 (r) (2.2)
(9.12)

It can be shown that the first integrals [(9.10-(9.12)]
are linearly dependent according to the relation

6A(2) + 9A(2'2) -— SA = O (9.13)
It is found that the derived integrals are
Awup’p’ =0, Aqnupp’ =0. 914

It follows from Eqs. (9.13) and (9.14) that all other
derived integrals based on Eq. (9.10) and G, defined by
Eq. (9.9) are either identically zero or are linearly
dependent on A4 and Ay .

15J. Levine, Ann. Math. (Princeton, New Jersey) 52, 465 (1950).
Note that in Theorem 5.2 of this reference, [p, xp + ¢] should be
replaced by [p, xp + yql.
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The only linearly independent LFI admitted by
this V, is given by
2
A
yi41
It is evident that none of the QFI, 4, 4, or A9
is expressible as a constant times the square of L.

1

5(1)1Pi = 5(1)11’1 =

Example 4: From Ref. 15, p. 471, it is known that
the A,, defined by

2 —1 4
}1=_2’ F}2='_, F;2=0’ F%l':”}a
y y y
1 -
F%z = ng =
admits the 4C, generated by
E(l) = (1’ O)a 5(2) = (2X, y)’ (915)
5(3) = (xza x_y): (xl = X, X2 = )’)
It can be shown that this A, admits the LFI
i 2 1
Ap'=—Sp' +pP=A (9.16)
y y

The first derived integral based on the LFI (9.16) and
(9.15) are calculated to be

A(l)ipi =0, A(Z)ipi = —A,

9.17

Agyp' = (2_); + l) Pt — % PP = Ay ( )
y y y

All higher-order derived integrals derived from (9.16)
are thus linearly dependent on 4 and A, . The space
A, is not projectively flat, and hence cannot admit
more than two linearly independent linear first inte-
grals (Ref. 3, p. 123). This implies all linear first
integrals are linearly dependent on 4 and A4,.
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In a previous paper, we showed how wavefunctions which transform in a relativistic manner in
configuration space can be expanded in terms of amplitudes, which for nonzero mass transform like the
wavefunctions for irreducible representations of the proper, orthochronous, inhomogeneous Lorentz
group. A simple algorithm was given to obtain the expansion. In the present paper, we extend the results
to include zero-mass amplitudes. It is shown that for wavefunctions which are required to transform under
the homogeneous Lorentz group such that the matrices which involve the spinor indices are finite
dimensional, the zero-mass amplitudes transform under nonunitary representations of theinhomogeneous
Lorentz group. However, it is possible to split up each such nonunitary representation into a part which
corresponds to a unitary representation for finite spin and into a part which corresponds to an un-
physical change of wavefunction. As examples of the technique, we consider wavefunctions which
transform as an antisymmetric real tensor (Le., as an electromagnetic field) as a four-vector with and
without the Lorentz condition, and as a Dirac spinor. The results offer interesting contrasts with the
reductions of Part I where only nonzero-mass components were considered. It is shown that the
expansion of the present paper, when applied to the solution of Maxwell’s equations, leads to an expan-
sion in terms of photon wavefunctions and that the unphysical change of wavefunction is zero. For a real
vector potential with the Lorentz condition (i.e., the electromagnetic vector potential), the expansion
corresponds to the sum of an expansion in terms of photon wavefunctions and a wavefunction which
sets the gauge of the vector potential. The nonphysical part of the transformation of the electromagnetic
vector potential is merely a gauge change. Finally, solutions of the massless Dirac equation are expanded
in terms of wavefunctions for massless particles of spin } for which the nonphysical part of the change
is zero. In the present paper, we also show how invariant inner products are to be introduced, how
negative-energy representations can be replaced by positive-energy representations (“antiparticles”),
and show the connection with the usual canonical formalism. Finally, second quantization of the theory

JANUARY 1968

is given.

1. INTRODUCTION

The present paper was written as a direct extension
of Part 1.! When we require an equation which
appears in Part I, we refer to that equation by pref-
acing the equation number by 1.

In the present paper, we consider wavefunctions
W¥(x), which transform under the transformations of
the proper, orthochronous, inhomogeneous Lorentz
group as in (I 2.10), (I 2.11), and (I 2.12), and assume
the existence of mass-zero representations of the inho-
mogeneous Lorentz group are contained in the
reduction formulas. However, the situation for the
mass-zero case is rather different than for the nonzero
case for most cases of physical interest; namely for
those cases in which the operators M; and N, are
finite-dimensional matrices. We require the matrices
M; to have the reduced form of (12.22) and be
Hermitian. As mentioned in Part I, the matrices N,
cannot be Hermitian for the finite-dimensional case.
This fact has a consequence. We show that, though
it is possible to expand ¥'(x) into modes which trans-

* Operated with support from the U.S. Advanced Research

Projects Agency.
1 H. E. Moses, J. Math, Phys. 8, 1134 (1967).
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form like nonunitary massless representations of the
inhomogeneous Lorentz group such that under the
transformations of the inhomogeneous Lorentz
group, the transformed wavefunction ¥(x) can be
expanded in terms of the transformed modes; such
an expansion is not, in general, possible if we require
the modes to transform under the irreducible unitary
representations. Thus, the modes which appear in
the expansion cannot be interpreted as wavefunc-
tions of massless relativistic particles in the same
simple way as the modes which appear in the expan-
sion of the wavefunction when we assume nonzero
mass.

For such cases, which are the most important ones
for physics, we are thus compelled to give up the
requirement that the expansion of ¥ in terms of
relativistic particle wavefunctions be such that the
transformed function ¥" has the same expansion in
terms of the transformed particle wavefunctions.
However, if we loosen our requirement, it is possible
to expand ¥ into massless particles of finite spin in
Wigner’s classification of the irreducible representa-
tions of the inhomogeneous Lorentz group.? We

2 E. P. Wigner, Ann. Math. 40, 149 (1939).
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show that under the transformations of the inhomo-
geneous Lorentz group, the transformed ¥ has a part
which we may interpret as being nonphysical or
corresponding to a sort of “gauge change.” If the
unphysical part of the transformed function is ignored,
the remaining *‘physical” part of ¥ is indeed the same
expansion in terms of the transformed massless par-
ticle wavefunctions as the untransformed function
Y was of the untransformed particle wavefunctions.

We have applied our formalism to the wavefunction
which tramsforms like an antisymmetric real tensor
(or, what is the same, as the electromagnetic field
tensor) to the wavefunction which transforms like a
four-vector with and without reality conditions, and
with and without the Lorentz condition, and to the
wavefunction which transforms as a Dirac spinor.
It is found that for real antisymmetric tensors which
satisfy Maxwell’s equations and spinors which satisfy
Dirac’s equations for zero mass, the unphysical part
of the transformed wavefunction is zero. For the
real four-vector which satisfies the Lorentz condition
(and can thus be interpreted as being the electro-
magnetic four-vector potential), the unphysical part
of the transformed wavefunction is just a gauge
change. Indeed, for this reason, the name “gauge
change” seems justified for the unphysical parts of the
transformed wavefunction.

Our expansion is a direct application of Ref. 3,
just as was the expansion of Part I. In the present
paper, we also show how the negative-energy wave-
functions which appear in the expansion can be
replaced by positive-energy wavefunctions (wave-
functions for ‘“‘antiparticles”) so that one obtains
expansions in terms of positive-energy wavefunctions
only. We also show the connection to the canonical
formalism for the examples treated herein and indicate
how second quantization can be introduced to give
the usual covariant commutation rules in configura-
tion space.

The interesting results for the electromagnetic fields
and electromagnetic vector potential have already
been given in Ref. 4, where the expansions of the
electromagnetic vector potentials and fields were
presented and verified from a different point of view.
In the present paper, we show how these expansions
are obtained from a general procedure and effectively
that the expansions of Ref. 4 are the only possible
relativistic expansions.

It should be mentioned that the reduction of solu-
tions of Maxwell’s equations is given from a different
point of view and using rather different techniques

3J. 8. Lomont and H. E. Moses, J. Math. Phys. 8, 837 (1967).
4 H. E. Moses, Nuovo Cimento 42, 757 (1966).

in Ref. 5. In Ref. 6, the reduction of second-
quantized wave equations, including Maxwell’s equa-
tions, is discussed from quite a different point of view
than that of the present paper. A more closely related
approach is given in Ref. 7, where wave equations
are found for wavefunctions in the momentum
representation when irreducible sets of matrices
M, N; are prescribed. In that reference (see also
Ref. 8), it is also found necessary to regard part of the
transformed wavefunction as being unphysical or
corresponding to a gauge change.

2. MASS-ZERO REPRESENTATIONS FOR THE
INFINITESIMAL GENERATORS OF THE
INHOMOGENEOUS LORENTZ GROUP:

ALGORITHM FOR THE REDUCTION
OF WAVEFUNCTIONS

In the present section, we give the algorithm for
the reduction of wavefunctions into the zero-mass
representations of the inhomogeneous Lorentz group.
But before we can present this algorithm, some
preliminary material on “standard™ realizations for
the representations must be given. These realizations
are generalizations of the realizations of Ref. 9 (see
also Ref. 3).

A. Generators of the Two-Dimensional
Euclidean Group

Let us consider a vector space of functions of a
real variable A which can be continuous, discrete, or
finite dimensional. Let us assume the variable 1 is
discrete (as it will be for our applications) for the
sake of concreteness. Any more general sets of values
for 4 can be treated similarly. A member of the vector
space is denoted by F(4). Let us define three operators,
Ty, T,, and K, which satisfy the commutation
relations,

[Tls T,} =0,
[Ty, K] = —iT,, @.1)
[Ty, K] = iT;.

These three operators satisfy the commutation rules
for the infinitesimal generators of the two-dimensional
Euclidean group. Then we define the matrices
T, (| X), K(A| ) by

TF(A) = ; T | F),

KF(2) = 3 KQ.| ¥)F(%). (2.2)

& C. Fronsdal, Phys. Rev. 113, 1367 (1959).

8. Weinberg, Phys. Rev. 138B, 989 (1965).

7 A. McKerrell, Ann. Phys. (N.Y.) 40, 237 (1966).

8 A. McKerrell and D. L. Pursey, Bull. Am. Phys. Soc. 10, 89
(1965).

9J. S. Lomont and H. E. Moses, J. Math. Phys. 3, 405 (1962).
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The matrices of Eq. (2.2) constitute a representa-
tion of the infinitesimal generators of the two-dimen-
sional Euclidean group. The forms that these matrices
can take when they are an irreducible Hermitian set
of matrices such that the eigenvalues of K are either
an integer or half-odd integer are discussed in Refs.
2 and 9. For most of our applications, such restric-
tions on the representations are too severe.

B. Massless Representations of the Infinitesimal
Generators of the Inhomogeneous Lorentz Group
Let us now introduce a space of complex functions
f(p, A), where p = (py, s, ps), and where the range
of each variable p; extends over the entire real axis.
The range of A is as before. We now introduce a
realization of the infinitesimal generators of the
inhomogeneous Lorentz group when any representa-
tion of the infinitesimal generators of the two-
dimensional Euclidean group is given. For simplicity,
we suppress the appearance of the variable 1 and use
Kf(p) to mean
3 KG| 2)f @ )

and similarly for T, f(p). Then our realization of the
infinitesimal generators of the inhomogeneous Lorentz
group is

P'f(p) = Hf(®) = epf(®) (P = IpD,

P.f(p) = p.f(p),

5@ = [ =13 e —a% + L k]
L@ = [ =1 3w, ;; + L k)
S = [ =i 3 eon aak K] o,
b = fivg -+ [ s -
* S e
Sof () = {zp o K P
h’%_) -5,

4./ (p) = { p- o 23)

ops

In (2.3), the quantity € (which is the sign of the energy)
may take on either the value +1 or —1.

It is easily verified that the infinitesimal generators

do indeed satisfy the required commutation relations

[P1T1 + PzTZ]}f(P)

(I2.17). It is not difficult to show that a necessary and
sufficient condition for the existence of an upper
product which makes the above representation of the
generators of the inhomogeneous Lorentz group
Hermitian is that the representation of the generators
of the Euclidean group be equivalent to a Hermitian
representation of that group.

Certain kinds of representations of the generators
of the Euclidean group are of particular interest. We
call them Typel, Type I1,and Type Il representations.

Type 1 representations: By Type 1 representations,
we mean those which are irreducible Hermitian
representations for which the eigenvalues of K are all
integer or half-odd integer. As is well known, these
representations are characterized by the value of the
scalar, real and positive 2, which is given by

(T} + TDf () = rif(p).

The infinitesimal generators of the Lorentz group
defined by (2.3) are then Hermitian when we define
the inner product of two vectors [®) and |D)) repre-
sented by f(p) and f(p), respectively, by

@V | D) = ; f d—:f Ox(p, Df(p, A).  (2.4)

[In (2.4), it was convenient to show the variable i
explicitly, though in (2.3) it is not necessary to do so.]

If r2 > 0, then the variable i takes on all integer
or half-odd integer values, and the matrices which
represent the generators of the Euclidean group are
infinite dimensional. The dynamical system is identi-
fied with particles of “continuous™ or infinite spin.

The corresponding representations of the inhomo-
geneous Lorentz group are irreducible.

Type 1I representations: These representations are
special Type I representations and correspond to the
case r2 = 0. In this case, A is either an integer or haif-
odd integer. The matrices corresponding to the
generators T are zero and the operator corresponding
to K is simply multiplication by the scalar 1. The
dynamical systems corresponding to these represen-
tations of the infinitesimal generators of the inhomo-
geneous Lorentz group are identified with particles of
finite spin |A|. The value of 4, which includes the sign,
gives the helicity of the representation. In practice,
these representations are the most important ones for
physics.

Type III representations: These representations are
generalizations of Type I representations. These repre-
sentations are characterized by the requirement that
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the operator K be Hermitian and has only integer or
half-odd integer eigenvalues. The Type III represen-
tations, with which we are most concerned, are those
for which the matrices representing T; and T, are
finite dimensional (but not zero). In this case, it can
be shown that the matrices representing T, are not
unitarily equivalent to Hermitian matrices. For such
representations of the infinitesimal generators of the
Euclidean group, the generators of the Lorentz group
given by (2.3) cannot be Hermitian nor reduced to
Hermitian representations.

C. Unphysical Changes in Wavefunction:
Gauge Change

Let us now consider a Type 111 representation of the
infinitesimal generators of the inhomogeneous Lorentz
group for which the operator K is diagonal. By carry-
ing out a transformation in the 4 variable, the operator
K can always be brought to this diagonal form. Then,

Kf(p, 4) = if(p, 1) (2.5)

Under the various infinitesimal changes of frames of
reference, the wavefunction f{(p, 1) changes by an
infinitesimal amount given by Af(p, ), where A4 is
the appropriate linear combination of infinitesimal
generators of (2.3). Let us consider those cases for
which A is restricted to being one of the infinitesimal
generators. It is easily seen that for general Type 111
representations of the Euclidean group, when A4 is one
of the operators fh , A will not be Hermitian generally
and Af(p) will thus not correspond to a change of
wavefunction which conserves probabilities. These
considerations lead us to considering Af(p) as con-
sisting of two parts, one of which corresponds to a
true physical change of wavefunction and the other
part of which corresponds to an unphysical change
of wavefunction of “change of gauge.” This view is
combined with the notion of only working with
finite-spin representations generated by Type II
representations of the Euclidean group.

Let us consider f(p, 4) for each 4 as being the wave-
function for a finite-spin representation characterized
by 2 (and e). It is readily seen from (2.3) that if 4 is
any of the infinitesimal generators P,, H, and J,, the
function f(p, 1) transforms properly as a finite-spin
wavefunction for each value of 4, separately. However,
if 4is ffi, this statement is no longer true. In fact
(suppressing 4 for simplicity), we have

F.0() = 2(p) + §1 (),

where ’3?‘ is the finite-spin operator (for which
T; = 0) and g,(p) is the inessential change in wave-

(2.6)

function or “gauge change” given by

2(p) = {[ 1 zﬁf) Tz}ﬂp),

(2.7)

_p 1}
P’(p+ps) »p
and so on [see (2.3)].

When the operator K is not diagonal, we introduce
the unitary operator V' which diagonalizes X:

VKV = K, (2.8)

where K| is the diagonal matrix.
We also introduce the wavefunction r(p, 1) by

f(p, ) = AE V(| )r(p, ),

where V(A] A") is the notation for the matrix element
of V. We now regard r(p, 1) as the wavefunction for
finite spin characterized by the helicity 4 (by picking
the label properly for 1) and sign of energy given by
e. Then, if A is any of the infinitesimal generators
P,, H,J,, we have (on suppressing the label 1)

Af(p) = VADr(p),

where A is the corresponding operator for the finite-
spin representation. For the space-time infinitesimal
generators §,, we have, instead of (2.6),

5S0) = &a® + ViPr. (21D
The gauge changes g; are given by (2.7) and similar
expressions as before, but we replace f(p) in these
expressions by Vr(p) in accordance with (2.9).
Finally, we note that the matrix V' is not unique.
But this lack of uniqueness is reflected in trivial
choices of phase of r(p, 1).

(2.9)

(2.10)

D. Construction of ‘‘Antiparticle’’ Wavefunctions
from Negative-Energy Wavefunctions for Finite-
Spin Representations

As in Part I, we find that the expansions of the
wavefunctions ¥'(x) contain amplitudes which corre-
spond to negative-energy representations. For physical
applications, we want to replace these negative-energy
representations by positive-energy representations.
In this context, we let f(e, p, 4) be the wavefunction
for a finite-spin particle characterized by the helicity
4 and by the sign of energy given by e. In Appendix
A, it is shown that the function A(e, p, 1), defined by

h(E’ P, Z’) = e42i/1<pf*(_€, —P, l)a (212)
where ¢ is the angle given by
tan ¢ = p,/p,, (2.12)

transforms like the wavefunction of a particle with
finite spin characterized by the helicity 4 and the
sign of energy . The asterisk means, as usual, complex
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conjugate. Equation (2.12) thus enables us to carry
out our program of replacing negative-energy wave-
functions by those of positive energy.

E. First Form of the Algorithm for the Reduction
of the Wavefunction

We now give the algorithm which enables one to
reduce the wavefunction ¥'(x) into representations of
the proper orthochronous, inhomogeneous group for
Zero mass.

Let us define the column vector x(e, p, 1), whose
components are denoted by x(y | €, p, 4), by

x| € p, 2) = {exp [iw - M] exp [i*N,}},,, (2.13)

where {exp [iw - M] exp [i#N;]}, , denotes a matrix
element of exp [iw < M]exp [i»Ng] and where the
vector p is in a one-to-one correspondence with w
and » through the expressions

P = eEV,
Py = —p(sin wjw)w,,
P, = p(sin w/w)w,, (2.14)
Dy = €OS o,
w; =0, o=|w|
Then our expansion is
d
¥ =33 Puen Dfep A
x exp [i(p+x — ept)]. (2.15)

This expansion is such that if 4 is one of the infinitesi-
mal generators of Eqs. (I 2.13)~(I 2.15), then AV (x)
has the same expansion (2.15) above, where f(e, p, 1)
is replaced by Af(e, p, 4), the operators 4 being given
by (2.3), the value of e being the same as that in
f(e, p, 4). The representation of the infinitesimal
generators of the Euclidean group which occurs in
(2.3) is given in terms of M,, N, by

T1= _M2 - €N1,
Tz = Ml bt €N2,
K=M,.

In (2.15"), we have used the notation that 7 and
K are the matrices whose elements were previously
denoted by T,(4| %) and K(A | A"), respectively [see
(2.2)]. This algorithm is proved in Appendix B.

In the exceptional case that M; and N, are Hermitian
(a necessary condition being that this set of matrices
be infinite dimensional if they are not zero), the
infinitesimal generators of the Euclidean group are
Hermitian and reducible to the irreducible represen-
tations of the Euclidean group, which are representa-
tions of Type I. One can then introduce a unitary

.15

operator acting on the A variable in the function
f(e, p, 4) such that in the new basis the matrices T;, K
are reduced. One then has expanded ¥ in terms of the
amplitudes or wavefunctions f(e, p, 4) which trans-
form under the irreducible unitary ray representations
of the proper, orthochronous, inhomogeneous Lorentz
group with mass zero and sign of energy €. One may
then introduce the inner product (2.4) as an invariant
inner product, where ¥(x) and ¥ (x) are regarded
as configuration-space representatives of the states
in momentum representation given by f(e,p, ),
SfW(e, p, 1), respectively.

There seem, however, to be no physically inter-
esting examples (except for the scalar case) for which
the matrices M, and N, are all Hermitian. Indeed the
only examples which we can think of are given in
Ref. 10, where wave equations for functions of
infinite spin are discussed. In principle, the wave-
functions of Ref. 10 can be put into the Lomont—
Moses form through the use of the algorithm. There
seems, however, no point in doing so.

Since we wish to treat the more physically inter-
esting cases where the matrices M, and N, are finite
dimensional, we derive from the present algorithm,
variant forms which reduce the wavefunction to
amplitudes which transform under the finite-spin
representations of the inhomogeneous Lorentz group.

F. Second Form for the Algorithm

Let us introduce a unitary matrix ¥ which diago-
nalizes M; = K:
V_lMaV = M3d’ (2.16)

where M,, is the diagonal matrix, which we choose
to have the reduced form (I2.22), in which the
matrix S{" is diagonal such that the eigenvalues take
on the values j,j™ — 1,---, —j + 1, —j from
top to bottom along the main diagonal. Let us now
define the column vector x”(e,p, 1), whose com-
ponents are denoted by x"(y | €, p, 4), by

27 | € p, 4) = {exp [i> - M] exp [ivN;]V},;,
2.17)

where A is restricted to columns corresponding to the
rth block in the reduced form of M,. Furthermore,
we relable 4 so that when it corresponds to a column
of the rth block, its value is taken to be the eigenvalue
of S{" associated with that column. That is, for
example, if A corresponds to the second column of
the rth block, we take A to have the value j — 1. If
it corresponds to the third column, we give A the
value j — 2 and so on.

10 v. Bargmann and E. P. Wigner, Proc. Natl. Acad. Sci. (U.S.)
34, 211 (1948).
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The vector p is in the one-to-one correspondence
with » and w given by (2.14).
Then our expansion is

¥() = 333 Ce d j ";"Me, B, e, p, )

x exp [i(p+x — ept)]. (2.18)

In (2.18), the quantities C”(e, A) are arbitrary
positive constants. The expansion is such that if 4
is any of the infinitesimal generators P;, H, and J;,
then Ap(x) has the same expansion in terms of
Af (e, p, ), where A is the corresponding finite-
spin generator for sign of energy e and helicity 2.
However, the expansion for §,» is somewhat more
complicated:

3¥() = 333 e N[ By e 1S en
(2.19)

In (2.19), ?}i is the finite-spin generator and G,(x) is
the unphysical change which is added to ¥ when the
frame of reference is changed by an infinitesimal
space-time transformation. Explicitly, G;(x) is given
as follows. Let us introduce the column vectors
O{"(e, p, A), whose components are denoted by
O (y | €, p, 4), as being defined in the following way:

O (y|ep, A) =

x exp [i(p - x — ept)] + Gi(x).

{exp (iw - M) exp (ivN3)B,V },;,
where
p1p2 T

(2.20)
Pi 1:]
pi= [t~
e+ bl P+ e
2
— 2I’1P2 T +[2 Pq __:sz’
p(p+ p) pP(p+p) p

1 ’
By = 'I‘"g (1 T; + p.T5l. (2.20")

In (2.20), our convention for labeling A and r is the
same as that used for Eq. (2.17). The matrices T are
given in terms of M, N, by the first two of Eq. (2.15").

Now we can write G,(x) explicitly as

Gi) =333 Ce ) f d—;’ 0P (e, p, (e, p, 2)

x exp [i(p+x — ept)]. 2.21)

This form of the algorithm follows from the previous
form together with the discussion that leads to Eq.
(2.11). The constants C*"(e, 4) are introduced for the
sake of convenience, though they are not essential.

The functions G;(x) can be given in a neater form.
For n = 1and 3, let us define the column vector

E,(x) by
E ) =233 C"e )

T € A

B e, p, DI, D
p

x exp [i(px — ept)]. (2.22)

[It is clear that (92/0t®)E4(x) = —E=,(x).] Then using
V. = 0/0x,, it is shown in Appendix C that

G(x) = [ (M x V), +aa N]ul(x)
+ i(N - V)V — 3(x) (2.23)

Now we are in a position to define an invariant
inner product of two wavefunctions ¥ and ¥ which
have the same transformation properties. Let ¥ be
expanded as in (2.18) and let ¥'® have the same ex-
pansion but with the functions f"(e, p, 1) replaced
by g‘”(e, p, ). Then the inner product of ¥V and ¥,
which we denote by (‘F'W,¥), is given by

\Ip(l) 111') Zzz D(')(e, 1)
x f 9P (i (e, p, Hf e, py D), (224)
p

where the quantities D'”(e, 1) are any convenient set
of nonnegative real numbers. This definition of inner
product makes no reference whatever to the gauge
change.

G. Third Form for the Algorithm

The third form of the algorithm is simply a rewriting
of the previous form in which the negative-energy
wavefunctions are replaced by the complex conjugate
of positive-energy wavefunctions so that the expansion
can be interpreted entirely in terms of “physical”
particles. Our applications are stated in this form of
the expansion.

Let us then define the following:

270, = 77(+1,p,2),
C(T}(A) —_ C(T)(-f-l, ﬂ),
7 D =f"(+1,p, %),
L(T)(ps 2’) = e2il¢x(1)*(_1, _p’ }‘)
(where tan ¢ = p,/p)),
D(r)(l) — C(r)(-—l, ;L),
h(”(p, Z) — —2U.¢pf(r)*(__1, -

The expansion (2.18) becomes
¥(x) = 33 €0 f ‘%x"’(p, DI, 1)
X exp [i(p - x — pt)]
+ 33 D) f 9P (14(p, ) (p, 2)
r A P
(2.26)

(2.25)

p.A).

x exp [—i(p+x — pn)].
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The function &,(x) out of which the gauge change
is constructed is written analogously:

2,09 = 33 ) [£2 1. 57w, 1
r i P
X exp [i(p - x — pp)]

+ ;; D(r)a)J‘p_‘ig_l_ Z(’)*(p, l)h(')*(p, 2)

x exp [—i(p+-x — p1)]. (2.27)

The inner product (2.24) now reads
¥, %) =3 3 EV() f 0 oox(p, 1y £ p, A)
r A P
+3 3 F0) f 9P o, KV(p, A), (2.28)
r D

where E(4) and F"(}) are arbitrary positive con-
stants which we may choose for our convenience,
and g"(p,A) and k™(p, A) are the wavefunctions
which take the place of f”(p, 1) and A")(p, 1) in the
expansion of ¥ according to (2.26).

3. WAVEFUNCTIONS WHICH TRANSFORM
AS A REAL ANTISYMMETRIC TENSOR
OR ELECTROMAGNETIC FIELD

We now apply the procedure given in the previous
section. The simplest application is to wavefunctions
which transform as a scalar. The various results for
the expansion and the connection to the canonical
formalism, as well as the introduction of second
quantization, are identical to corresponding results
for the scalar case in Part I when the mass u is set equal
to zero. Hence, we do not consider this case.

Instead, we do consider the important case of
wavefunctions which transform as a real antisymmetric
tensor or, what is equivalent, as an electromagnetic
field. We shall thus expand the electromagnetic field
wavefunctions in terms of the irreducible representa-
tions and, when the wavefunctions are required to
satisfy Maxwell’s equations in the vacuum, obtain the
expansion of the wavefunction in terms of photon
wavefunctions. This latter result has been obtained
from a different point of view in Ref. 4 where the
reduction was obtained as a sufficient condition for
reduction to photon wavefunctions. By contrast, in
the present paper the expansion is obtained as a
necessary condition.

A. The Expansion and Gauge Change

We follow Sec. 4 of Part I very closely for the sake
of brevity. Accordingly, we define the column vector
¥'(x) by (I4.1) and (I14.2). The matrices M,, N, are

given by (14.3) and (I 4.4). For the matrix ¥, we use

-@* 0 (@t
V={ —i2yt 0 —iQ)* (3.1
0 1 0

The matrices M, form an irreducible representation
of the rotation group with j = 1. Hence, the label r
takes on only one value, which we shall not indicate.
Furthermore, the variable 2 takes on the values +1,0.
On using (2.17), (3.1), (14.6), and (I 4.8), we obtain
the following results for y(e, p, 4):

pi/p
pap |

D3P
26 p. ) = [ H(2)Ho(p, H) for A= %1, (3.3)

X(G’ P; O) = (32)

‘where o(p, 4) is the column vector (defined only for

A= £1);
pi(ps + iApy) -1
p(p + py)
po(py + idpy) .
a(p, A) =] =———72 _ i3 3.3
p(p + ps) (3.3
pL + Aip,
p
From (2.25) {(p, 1) is given by

Up, A = =ApYQYo(p, 4) for A= 1. (3.5)

As in Sec. 4 of Part I, it is convenient to introduce
a vector notation for ¥ and related quantities. Thus,
we define the vector W(x) as the vector whose com-
ponents are the components of the column vector
¥'(x). Similarly, we define the vectors %(p, 1), E(p, 1),
o(p, 4), &,(x), and G,(x). '

Then the expansion corresponding to (2.26) can be
written as follows:

¥(x) = f %’x@, 0)[C(0)(p. 0)e'®*—="
A

— 0)h* —1 (p.X—~pt)

X {cu) f 4B 1ra(p, 1)1 (b, DO — D(7)
Y4
x f B Lig(p, Hh*(p, e=»x—20). (3.6)
14

The expression for &,(x) is the same as (3.6), but
dp/p is replaced by dp/p"*1.
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The expressions for the infinitesimal gauge changes
can now be written in the following form. Let us
denote the unit vector in the direction of the ith space
axis as e; [e.g., ¢, = (1,0, 0)].

Then,

G,(x) = —VE,,(x) + &IV - E(x)] — ia% le, X E(x)]

a2
—i
0x 0t
where Z,; ; denotes the jth component of the vector
Z,, and V is the gradient operator in X space.

Finally, we note certain properties of x(p, 0) and
o(p, A) which are useful, to wit,

[V x(p, 0)e™*] = ip,
[V o(p, He™™] =0,
[V x x(p, 0) exp (ip* x)] = 0,
[V x o(p, 4) exp (ip* x)] = pio(p, 2)

[V x Ey(x)], (3.7)

(3.8)

B. Solutions of Maxwell’s Equations: Connection
with the Canonical Formalism, Second
Quantization, Gauge Change

In terms of ¥ (x), Maxwell’s equations in the vacuum
for E and H become

V-¥W=0,
5}
¥=—i—-W 3.9
VX lat (3.9)
The first of Egs. (3.9) leads to
S, 0) = h(p,0) =0, (3.10)

when the first two of Eqs. (3.8) are used. Hence, there
can be no spin-zero massless particles in the expansion
for the electromagnetic fields.

The second of Egs. (3.9) leads to

S, +1) = h(p, —1) =0, (3.11)

on using the second two of Eqgs. (3.8). Thus, in the
expansion (3.6), only the wavefunctions f(p, —1) and
h(p, +1) need not be identically zero for W to satisfy
Maxwell’s equations (3.9). It is natural to regard these
functions as being wavefunctions of the photon where
A is the circular polarization. The value 4 = +1
corresponds to circular polarization in the direction
of propagation given by p, while the value 4 = —1
corresponds to circular polarization in the opposite
direction.

To find the constants C(—1) and D(+1) in the
expansion (3.6), we connect the canonical formalism
to the particle nature of the field as discussed in Part
1. The Hamiltonian density of the field, which in the
present case is identical to the electromagnetic energy
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density, is given by
H(x) = 8= Y(E* + H) = (8m) ' W*. ¥. (3.12)

For the mode A(p, +1) = 0, we require that the total
energy of the field equals the expectation energy when
the wavefunction of the photon is given by f(p, —1),
ie.,

d
H = f H(x) dx = f ff*(p, —1)pf(p, —1).
Likewise, for the case that f(p, —1) = 0, we require
H =fdp Ih(p, +1)[2

These requirements lead to

C(—1)=D(+1) ==L (3.13)
From
E = §(¥ + ¥,
H=3i(¥ — ¥*), (3.14)

we can expand the electromagnetic fields E and H
themselves in terms of the photon wavefunctions. The
expansion takes a neater form if we change the phase
of the wavefunctions in a trivial way. Toward this end,
we introduce the wavefunctions g(p, A) defined for
A = £1 as follows:

gp, =1) = —if(p, — D). (3.15)

Then from (3.14), (3.6), (3.13), (3.10), and (3.11), we
obtain the following expansions for solutions of
Maxwell’s equations:

E(x) = i(8712)—% ;fdp[g(l), Na(p, l)ei(pax_pt)
— g*(p, 2.)0’*([), l)e—i(p'x—pt)]’
H(x) = (8772)—% ; lfdp[g(p, A)G(P, l)ei(p.x_m)

+ g*(p, Ho*(p, He ™). (3.16)

Equations (3.16) are identical to Eqs. (4.2) and (4.3)
of Ref. 4 except for some slight differences of notation.
The significance of 1 as a parameter describing
circular polarization of the electromagnetic field is
described in some detail in Ref. 4.

It is readily shown, from the fact that &, (x) satisfies
Maxwell’s equations (3.9) when W(x) does, that the
gauge changes G,(x) are identically zero. Hence, when
the wavefunctions g(p, 4) transform like single-spin
relativistic wavefunctions, E, H, and W transform as
required without the necessity of introducing un-
physical portions to the transformed wavefunction.

To second quantize the theory, we consider g(p, 1)
and g*(p, 4) to be destruction and creation operators,
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respectively, which satisfy the boson commutation
rules,

[g(p, ), g(p’, )] = [g*(p, 1), g*(p', )] =0,
[g(p, 1), g*(p’s )] = Pd;,2:6(p — P')- (3.17)

It is readily shown that the electromagnetic fields E
and H satisfy the usual commutation rules. It is also
an easy matter to show that the second quantized
theory is relativistically invariant. Let 4 be any of the
single-spin infinitesimal generators and let Ag(p, 4)
mean that the operator 4 acts upon the destruction
operator g(p, A) through p and i (which takes on
only the values 1) as though g(p, 1) were a wave-
function of positive energy and a helicity given by .
Then for every operator A, we can define a second
quantized operator [4] by
M1=3 [P DAs0 . (319
As described in Part I, the operators [4] are the
infinitesimal generators for the second-quantized
theory. Let us now regard ¥(x) = E(x) — iH(x) as a
vector whose components are operators. Then under
the translation 7(a%), the set of operators ¥ trans-
forms to ¥’ by

¥(x) = ¥(x + a)
= exp {—i > a“[Pa]}‘I’(x) exp {i > a’[P,]}.
(3.19)

Likewise, under the rotation R(®), the new set of
operators ‘¥’ is given by both

W'(x) = exp {—i0 - [JI}¥(x) exp {i0 - [J]} (3.20)

and (I 4.11). Under the pure Lorentz transformation
L(P), the new set ¥’ is given by both

W'(x) = exp {—if - [FYEC) exp (B - B} (3:21)
and (I 4.12).

4. WAVEFUNCTIONS WHICH TRANSFORM
AS A FOUR-VECTOR

In the present section we use the notation of Sec. 5
of Part I for the four-vector.

A. The Expansion and Gauge Change

In the present case, the matrices M; = M, are
given in the reduced form (I2.9), where one of the
sets of reduced matrices corresponds to j = 0 and the
other corresponds to the infinitesimal generators for
ordinary rotations in three-dimensional space for
which j = 1. Accordingly, the matrix V' is written in

a similarly reduced form as

1 0
V = s
0 V,

where V3 is the three-by-three dimensional matrix
called ¥ in (3.1), and the zeros in (4.1) are the row or
column vectors needed to bring V into thereduced form.
The label r can now take on two values correspond-
ing to the two irreducible representations of M; which
appear in (I12.9). We take r = 0 to label the scalar
representation and r = 1 to label the vector repre-
sentation. For r = 0, A can take on only one value,
namely zero. For r = 1, A can take on the values 0, 4- 1.
The rotation matrix exp (i - M) also takes on a
reduced form corresponding to (I 2.9); namely,

(4.1)

exp (10*M) = (1 4.2

0 R(e))’
where R(0) is the ordinary 3 X 3 rotation matrix
whose elements are given by (I 4.6).

We now can find the transformation column
vectors ¥ from (2.13) and (2.14) on using (4.1),
(3.1), (4.2), (14.6), (I15.3), and (I 2.6). On labeling y
from 0 to 3 as in Part I and A as indicated above, we
have the following results:

2
P+l
-1
)X
© pP—1
2 (e, p,0) =¢€ ;0 (43)
D
p
Ps
p
p’—1
€ 2
Pr+1
P
2
+1 P
2, p,0) = 2 ; ;o (44)
P P
P
Ps
P
0
}. Gl(pa 2’)
De, p, V) = = for A= +1. (4.5)
2R =0 e, )
03(p’ }‘)
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In (4.5), the quantities o, are the components of the
column vector (3.3a).
For the column vectors {7, we have

{O(p, 0) = 7 (p, 0) = x(+1,p,0), (4.6)
{0 (p, 0) = —x(p, 0) = —x(+1,p,0), 4.7
{0, 1) = =20, ) =—xV(+1,p, 2

for 1= 41. (4.8)

Now we can expand the column vector 4(x), whose
components A’ are the components of the four-
vector, in accordance with (2.26). It is possible to
rewrite this expansion in a neater form. First of all,
we write

A=A, + A, (4.9)

where A, contains that part of the expansion of A
which contains zero-spin wavefunctions only, and A4,
contains only the spin-1 wavefunctions. In the expan-
sion for A;, it is convenient to replace the wave-
functions £ (p, 1) by Af ¥(p, 4), and AV (p, 2) by
—2hW(p, 2). These changes are, of course, trivial
changes of phase. Then the expansion for 4, takes the
form

Ai(x) = ( 4.9")

A1<x)) ’

where A, is the vector whose components are the space
components of the four-vector 4,(x). A, is given by

A= 3 o) [R0, Dote, et

A==1

+ D(z)fd—p”‘”*(p, De*(p, De >, (497)
p

where in (4.9”) we have absorbed a factor of (2)}
into the yet undetermined constants C(1) and D(4),
and where ¢ is the vector whose components are o;.
The expansion for A, can also be made simpler by
expressing the wavefunctions for zero spin as linear
combinations of other zero-spin wavefunctions.
Accordingly, we introduce the wavefunctions g (p),
k" (p) by

E®gO(p) = F[CP(0)f M (p, 0) + CO0)f(p, 0)],
EWgh(p) = F[CPO) f P (p, 0) — CO0)f(p, 0)],

FOk®(p) = —3[D(0)A(p, 0) — DR (p, 0))

FOKO(p) = — (DD (p, 0) + DVA"(p, )],
(4.9")

where E™ and F are arbitrary positive constants.
It is clear that the functions g (p) and £‘”(p) trans-
form as massless particles of spin zero.

We also introduce the column vectors £"(p) by

p
(0) (1) (0) _ Py
EV%p) = (P, 0) + 1" (p,0) = ,
P2
D3
~p
1 p Yk
E0(p) = yp,0) — 2%, 0 == T |. 4.9
4 Ps
Ps

Then A, has the expansion

d r) 7 i(p-x—
Ao(x) — sz E(r)(p)[E( )g( )(p)e (p-x—pt)
+ F(’r)k-('r)*(p)e—i(p-x—pt)]. (4.91////)

Then to summarize: The four-vector written as the
column vector A is split into two parts and in (4.9)
with 4, given by (4.9) and (4.9), while 4, is given
by (4.9").

Now we write the expressions for the gauge change.
We introduce the column vector E,. We can split it
up as (4.9) corresponding to the separation into
contributions from zero-spin wavefunctions and spin-
1 wavefunctions. The expansions for each part of &,
are the same as for the corresponding part of 4 [Eqs.
(4.9") and (4.9"™)] except that dp/p is replaced by
dp/p™*L.

Let us denote the top component of =, (x) by Z%(x)
and use the three remaining space components to
form the vector E, (x). Likewise, if G;(x) denotes the
column vector which gives the infinitesimal gauge
change, we introduce G%x) and G,(x) as the top
component and vector formed of the space compo-
nents, respectively. Then the gauge change is given by

60 = - V- B0 + L&, ()
: axat ot
02 - - -
G(x) = ~L VEYx) — VE, ,(x) + eV - E)]
0x;0t

+ ei%E‘}(x). 4.10)

In (4.10), the quantity Z, ,(x) is the ith component of
the vector &,(x).

B. The Electromagnetic Vector Potential

Now we specialize the results to the electromagnetic
vector potential. First we show the effect of imposing
the Lorentz condition and the reality condition on
the column vector A separately. Then we impose
these conditions together. In this latter case, the



26 HARRY E. MOSES

components of the column vector can be considered as
the components of an electromagnetic vector potential.

First of all, we note that the components of A4,
already satisfy the Lorentz condition on account of
the second of Eq. (3.8). Thus, only the zero-spin
wavefunctions contained in A, are affected by the
Lorentz condition. Indeed, it is seen that the imposi-
tion of the Lorentz condition leads to

gh () = kW (p) = 0. (4.11)
The simplicity of (4.11) was the chief reason for the
introduction of g and k(.
The components of A4, then take on a particularly
simple form: 5
AY(x) = —i—— F(x),
a b4
where F(x) is a scalar function given by

F(x) =f_‘_11_? [E(O)g(o)(p)ei(p-x—pt)

— F(O)k(o)*(p)e—-i(n-x—m)]_ (4'12’)

Since the scalar F(x) satisfies the zero-mass wave equa-
tion, it is clearly seen that 4, represents a gauge change.

It is easy to show that, when the Lorentz condition
is satisfied, 4, makes no contribution whatever to the
gauge change column vectors G,. The expressions for
the gauge change simplify considerably and become

i) = — = By ), (413
ox,
where the vector E; has the same expansion as A,
[Eq. (4.9b)] but where dp/p is replaced by dp/p*.

We now see the effect of imposing the reality con-
dition (without, however, imposing the Lorentz con-
dition). It is readily seen that the requirement that the
components of the column vector A be real, leads to

EMgtn(p) = FOK™(p),
CA)f D (p, 4) = DA (p, 2).
We now impose both the reality condition and the

Lorentz condition on the components of 4. We can
summarize the results as follows:

A(x) = Ay(x) + Ay(x),
Ay(x) = Ef df E(p)[g(p)e’®>*1) + g*(p)e~ ),

(4.12)

(4.14)

40 = (4 o)

Al(x) = z C(l)f@ [f(P, ﬂ.)c(p, A)ei(p.x_,“
A=+1 p
+f*(pa l)a*(p, /.,)e_i(l"x—m)],
EI(X) =l=zilc(l) Z—g) [f(P, }L)G(p’ A)ei(p.x_m)
+ f*(p, 1)o*(p, A)e—i(p-x—pt)]’

(4.15)

where
£ =g, (4.15")

and E is a positive constant. The complex functions
g(p) and f(p, 1) are functions which transform as
single-spin wavefunctions of spin zero and spin 1
with helicity A, respectively. The gauge change is given
by (4.13). Now we can find the electromagnetic
fields by

0
E = -3 A1 ’
()= =54 (4.16)

H(x) = V x A().

(In obtaining the electromagnetic fields from the
vector potential, we recollect that part of the four-
vector given by A, is simply a gauge term.)

We find the constants C(4) by requiring that, when
f(p, —1) = 0or f(p, +1) = 0, we have

8m) j [E* + H? dx = f 1£(p, +DI* dp

or
f 7o, =D dp,

respectively, in accordance with our requirement that
the total energy of the field expressed in terms of
field variables equals the expectation value of the
energy in terms of wavefunctions when only one mode
is present. We find that

C(A) = (8=%)-%, (4.17)
On picking the constant E to be
E = [4mi, (4.17)

we see that the expansion given by (4.15) is identical
to the expansion (3.14) of Ref. 4 when a slightly
different notation is used.

We can compare the expansion of the electromag-
netic fields, as given by (4.16) when the constants are
given by (4.17) and (4.17’) with the expansion (3.16)
of the present paper. We see that

S, 1) = g(p, 2. (4.18)

Equation (4.18) enables us to obtain the vector
potential (within a gauge) corresponding to any field
which satisfies Maxwell’s equations.

The second quantization of the vector potential and
the relativistic character of the second-quantized
theory is discussed in great detail in Ref. 4, and we
do not repeat it here.

5. WAVEFUNCTIONS WHICH TRANSFORM
AS A DIRAC SPINOR

We use the notation of Sec. 6 of PartI. In particular,
it is useful to note that the Dirac « matrices are given
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in terms of the Pauli ¢ matrices and the matrices N; by

0, o,
ot,-=2iN,-=< : 0’),

g; Y

(5.1)

and that the Dirac Hamiltonian H is given by

H=—ia-V. (5.2)

A. Forms for the Expansion of the Wavefunction:
Solutions of the Massless Dirac Equation

Since from (16.1) and (I 6.5), M, already appears
in a reduced, diagonal form, we may take the matrix
V of (2.17) to be the identity matrix. We note that
the label r can take on two values which we call 1 and
2. The variable A also takes on the two values 4 and
—1%. From (2.17), (I16.6), and (I 6.1), we obtain the
following expressions for the column vectors x(™:

1P, p, +3)
(p+Dp + p)
(p + D(p: + ips)
= {2p[2(p + p)It} ,
PP T P e(p— D(p + ps)

e(p — D(p1 + ipy)

(5.3)

1P, p, —%)
—(p+ D{p, — ips)

(p+ D(p + py)

= {2p2 -1 , (5.4
{2p12(p + pa))?} e« — D pr — ipy) (3.4)
—e(p — D(p + ps)
1 P(e, p, +3)
e(p — D(p + p3)
e(p — D(p1 + ip)
= 2p[2(p + pa)]t}? , (5.5
p[2(p + ps)]*} (7 + D(p + po) (5.5)
(p + D(ps + ip2)
x®(e, p, —3)
e(p — D(py — ip)
—e(p—1 +
= {2p[2(p + p1}}? (P = Dlp +p) (5.6)

—(p+ D(p1 — ip2)
(p+ D(p + ps)
As usual, we define x"(p, 1) by
2@ ) =" (+1,p, 4
and find that the column vectors (" are given by
{p, A = =2247"*(p, — D). (5.7

For future convenience, we note the important
relations

p-ay™(p, ) = 24px?(p, 4),

P’ ax(2)(p, l) = Zﬂpx(l)(p, 2. (5.8)

The expansion (2.26) can be simplified [in view of
(5.7] by replacing the wavefunction A"(p, 2) by
—2ih"(p, 7). This substitution represents a ftrivial
change in the phase of the wavefunction. Then the
expansion (2.26) can be written

0 = 33 [ (D0, 1y p, e

+ D(r)(l)h*(p, z)x('r)(P, _l)e—i(p-x—pt)}_ (59)

We now impose the requirement that ¥'(x) satisfies
the Dirac equation
ny =iy,
ot
We find from (5.8) that to satisfy the Dirac equation,
we must have
COM)f A (p, A) = 2ACH(A)fN(p, ),
DRMAH(p, 1) = —2ADV(DAV(p, 4). (5.10)
Equations (5.10) suggest another way of writing the
expansion (5.9) so that the wavefunction W(x) can be
expressed as the sum of two column vectors, each of
which transforms like a Dirac spinor, but only one
of which satisfies the Dirac equation. Accordingly,
let us define the wavefunctions g’(p, 4) and k" (p, 2)
by

E(l)(l)g(l)(p, l)
= HCYD S P (p, A) + 22CP D) f P (p, M), 51
E(Z)(l)g(m(p, z) ( 11)
= 3CPAN) S V(p, B) — 22CP @A) fP(p, V)],
F(”(l)k(l)(p, }.)
= [ DV(MRV(p, 1) — 24DP(A)n* (p, A)],
(5.11")

FO@K(p, 7)
= (DDA (p, 2) + 24DV (DK (p, 1)].
In Egs. (5.11) and (5.11), the quantities £”(4) and
Fi"(A) are arbitrary positive constants which we
introduce for later convenience.
The expansion (5.9) in terms of the new wave-

functions can be written as
V(x) =¥YV(x) + ¥ (x), (5.12)

where
qﬁ(’)(x) = gfd_;) {E(r)(z)g('r)(p, }b)f(r)(p, Z)ei(p«-m)

+ F("(A)k"’*(p, /1)5(’)(1), _Z)e—i(p‘x—pt)}’
(5.12%)
where &7(p, ) is a column vector defined by
&0(p, 1) = xV(p, 1) + 24x(p, 2),

5(2)(1), l) = x(l)(p’ 1) _ zlx(g)(p, 1) (512 )
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From (5.8), it is easily shown that
p- as?(p, 2) = p&P(p, 2),
praf®(p, 1) = —p&(p, 2).
From (5.13), it is seen that W@ satisfies Dirac’s
equation but that ¥"® does not. Hence, the condition
that " satisfies Dirac’s equation is
g(e)(pa }') = km)(pa l) = 0,
which is entirely equivalent to the condition that
Y@(x) = 0.
The wavefunction ® satisfies the “anti-Dirac
equation”

(5.13)

HY®(x) = ~i E% FR(x),

Because the column vectors £(p, ) play such an
important role, we shall give them explicitly:
P+ps
Pt ipe
P+ps
12% . iPz
—(pr — ip2)
oo, —p=pe+prt [ 7T ),
P1— P2
= +ps)
Ptps
E@)(p 1) = [2p2 -} Pyt ips
§9(p, ) = [2p*(p + pa)] ,
—~(p+py)
—(py + ipy)
_‘(Pl — ipy)
P+ ps
—(P1 - 'ipz)
pP+ps

B. Gauge Change

EN(p, ) = 2(p + po?

E2(p, =) = [2p%p + pII* - (5.14)

Let us split up the column vector E,(x) in a manner
analogous to the splitting up of ¥'(x) given by Eqgs.
(5.12) and (5.12"):

B (x) = EV(x) + EP (%), (5.15)

where Z!{7(x) is given by expressions analogous to
those to (5.127) for ¥ (x) but where, as usual, dp/p
is replaced by dp/p"*!. From the fact that Z‘V satisfies
Dirac’s equation and that Z!® satisfies the anti-Dirac
equation, we obtain the following very simple expres-

sion for the infinitesimal gauge changes G,(x); namely,
Gy(x) = —2i(M x V),E®(x). (5.16)

This result leads to the important theorem that for
solutions W(x) of Dirac’s equation, the gauge change
is zero. Thus, space-time transformations of the
wavefunctions g'W(p, 4), k'V(p,A) map into the
transformed ¥ without the necessity of taking into
account a gauge change.

C. Relation to the Canonical Formalism and
Second Quantization

In the present section, we restrict our discussion
to solutions of Dirac’s equations. Thus, we take
¥(x) = ¥ (x), where ¥'¥(x) is expanded as in
(5.12"). On using the Hamiltonian density (I 6.17) and
equating the energy of the field with the expectation
value of the energy in the particle picture, when only
single modes are used, we obtain

EW(}) = FO(1) = (4nd)1, (5.17)

To second quantize the theory, we replace g¥(p, 1)
and kM (p, 4) by destruction operators and their com-
plex conjugates by creation operators which satisfy the
commutation relations,

[g"(p, ), g0, 1)) = [KV(p, ), kP, 1)) = 0,
(g™, D, k@, )], = [V, 2), k¥, )], =0,

[g(l)(p’ l): g(l)*(p’5 ll)]-}- = [k(l)(pa l)s k(l)*(p/’ }'/)]+
= pd, 00 —p).  (5.18)

The column vector ¥'(x) now has operators for
components. We shall designate these operators by
Y'(x, t, y). Then from (5.12"), (5.17), and (5.18), we
obtain the commutation rules for these operators:

[F(x, t, p), ¥(x', ', y)], = 0,
[\F(xa t9 V), IF*(X,’ t,’ 7 )]4,~
0

- l:(a V), — 0, 5] Dy(x — X', t — 1),

is the well-known Pauli-Jordan

(5.19)

where Dy(x, t)
invariant function

Dy(x, 1) = (4= [x)7'[3(|x] — #) — (x| + 1],
(5.19)

and (a* V), ,. is the matrix element of & * V.

To show the invariance of the second quantized
theory, we introduce for every single-particle infini-
tesimal generator A, a second quantized operator
{A4] defined by

1= 3 [ 2 (60 480, 2
+ k™M*(p, DAL (p, 1)}, (5.20)

where the expressions Ag®W(p,A) and AkY(p, 2)
indicate that the operator A acts on the variables p, A
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as though gV and k¥ were single-particle wavefunc-
tions of positive energy and helicity 4.

Then one requires that under the transformations
T(a*), R(8), L(B), the column vector ¥'(x) constructed
from the four operators W(x, 7, ¥) transform to the
column vector ¥’(x) with corresponding operator
components, where ¥'(x) is given by (12.10)-(12.12),
respectively, with (I 6.6) to be used to simplify the
expressions. Invariance is shown by noting that ¥
can be obtained from ¥ through the use of unitary
transformations constructed from the second quan-
tized infinitesimal generators.

Thus, under the transformation T(a%), R(8), and
L(B), the column vector ¥'(x) is given by

¥'(x) = exp {—lZa“[P }‘F(x) exp{ iy a*[P, ]},
W'(x) = exp {—i8 - JW(x)exp {i0- [J]},  (5:2D)
¥'(x) = exp {—if - [3]}¥'(x) exp {iB - [3]},

respectively, where the equations of (5.21) are meant
to hold for each component of the four-vector.

APPENDIX A: INTRODUCTION OF ANTI-
PARTICLE WAVEFUNCTIONS

Let us consider a space of functions {f(p)}, such
that each member is a function of three continuous’
variables p, (collectively denoted by the vector p), each
of which can take on any value on the real axis.

Then the realization of finite-spin representations of
the infinitesimal generators of the inhomogeneous
Lorentz group which is given in Ref. 9 is (for helicity
/4 and sign of energy «)

P'f(p) = epf(p),
Pf(p) = p,f(p),

Ji@) = [—i(p x V), +

z} @),

Ps

z} @),
(A1)

Jf(@) = [—i(p x Ot e

Jof®) = [—i(p x V), + 21f(p),

() = e[ipvl + b — z} @),
fof (9) = e[ipvz - z] @),

FoS(®) = €ipV,f(p).

In (A1), we use V, = 9/dp,. If we introduce as the
inner product of two functions £ and f of the space,
the expression { (dp/p)f V*(p)f(p), the infinitesimal
generators are Hermitian. Of course, the realization
which we have just given is identical to the realizations
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given by (2.3) when we use Type II representations
for the Euclidean group. Let us regard the functions
of the space as being wavefunctions. Then, as shown
in Ref. 11, under the transformation 7(a®), the wave-
function which in the original frame of reference was
Jf(p) becomes in the new frame f’(p), where

/() = exp [i s aﬂﬁu} (@) = exp [i s a“pa] @),

Po= —p’' = ~ep. (A2)

Under the rotation R(8), the wavefunction in the
new frame is given by

f'(®) = exp (8- J)f(p) = exp [2i2L(8, PIf(p), (A3)
where p’ is given by
p’ =pcos® + [(1 — cos 6)/62]

X (0-p)0 + (sin /6)(6 x p), (A3)
[cf. (I 2.2)] and where {(0, p) is given by
tan [(6, p) = [0-p + 6;p] tan (6/2) (A3)

0(p + py) + (8 x p)stan (6/2)

Under the pure Lorentz transformation L(B), the
wavefunction in the new frame is given by

£(®) = exp (i - H)f(p) = exp [2iAea(B, p, 1 (@),
(A4)

where p’ is given by

P’ =p+ BB plicosh g — 1)/p7]

— Bep(sinh B/B) (A4)
[cf. the second of Egs. (I2.3)] and where o(B, p, ¢€)
is given by
(B x p), tanh (8/2)

B(p + ps) — €(pps + p - B) tanh (8/2)

(A4")

There is a second realization of the infinitesimal

generators of the inhomogeneous Lorentz group for

finite spin with given sign of energy € and helicity A

which is useful. This realization is, of course, unitarily

equivalent to the previous one. It is best introduced

through the use of a second space of functions {g(p)}

which is in a one-to-one correspondence with the
functions of the set { f(p)} through the relation

tan o(B,p,e) =

g(p) = e***f(p), (AS5)
where ¢ is defined by
tan @ = pyfp; . (AS)

Let A be any of the infinitesimal generators as
given in the realization (Al). Let us denote the corre-
sponding operator in the new realization by 4 which

1L H. E. Moses, Ann. Phys. (N.Y.) 41, 158 (1967).
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is defined by
Ag(p) = 72 4f (p). (AS")

Then the second realization of the infinitesimal
generators is

Pog(p) = epg(p),

Pig(p) = p.g(p),

Jig) = {—i(p x V), + [pi/(p — p)lA}g(p),
Jog(0) = {—i(p x V), + [pa/(p — pa)1A}g(p),
Jag(p) = [—i(p x V); — 2]g(p),

~318(]’) = e{ipV, — [p./(p — pa)IAg(p),
T8 = lipV, + [pi/(p — p)lAig(P),
Jag(p) = €ipVsg(p).

If we consider g(p) to be a wavefunction, we can
find from (A6) the wavefunction g’(p) in the new
frame of reference under finite transformations of the
inhomogeneous Lorentz group. One simply integrates
the infinitesimal generators of the realization of (A6)
after the manner of Ref. 11. Thus, for the translation
T(a*), the new wavefunction is

g'(p) = exp [i ) a“f’a} g(p) = exp [1‘ 2 a“p,]g(p);
(A7)

(AS6)

for the rotation R(8), the new function is

g'(p) = e g(p) = exp [—2iAL(0, —p)lg(p)), (A8)

where p’ and { are given by (A3’) and (A3“), respec-
tively, and finally, for the pure Lorentz transformation
L(B), the new wavefunction is

g'(p) = exp (i * H)g(p)
= exp [2iiea(B, —p, —9)lg(p), (A9)

where p’ and o are given by (A4’) and (A4?),
respectively.

By comparing the finite transformation formulas
for the two realizations, one sees that the function
[*(—p) transforms like one of the functions of the set
{g(p)} for which the helicity is still 2 but for which the
sign of energy is —e. Then from (AS5), we see that
e~Zef*(—p) transforms like wavefunctions belonging
to a realization of the first kind with helicity 4, but
with the sign of energy equal to —e. This observation
is the reason for the use of Eq. (2.12).

APPENDIX B: DERIVATION OF THE FIRST
FORM OF THE REDUCTION ALGORITHM

The algorithm is a direct consequence of the “‘recipe”
for reduction of reducible representations of the
inhomogeneous Lorentz group of Ref. 3. We want
to consider Eq. (1.14) of Ref. 3 for the case that u = 0,

This expansion and the transformation function
(£ | 0, ¢, p, 4) have been derived under the assump-
tion that all of the infinitesimal generators of the
inhomogeneous Lorentz group are Hermitian as ex-
pressed in the { representation. The formulas for the
matrices which are a representation of the Euclidean
group were also derived under this assumption.

However, when one examines the proof of the
reduction, one sees that the expansion (1.14) of Ref.
3 and the technique of obtaining the transformation
functions and Euclidean group are valid under the
less severe restrictions that only the Hamiltonian H,
the momentum operators P;, and the angular momen-
tum operator J; need be Hermitian. The requirement
on the operators §; are weakened to the requirement
that they can be exponentiated. In the expansion (1.14)
of Ref. 3, we need only replace the transformation
functions (¢ [ 0, €, p, 4) by the transformation func-
tion ({|0, e, p,A) which is constructed using Eq.
(1.24) of Ref. 3. The wavefunctions F(0, €, p, A) still
transform under the infinitesimal Lorentz transfor-
mations according to (1.9) of Ref. 3; that is, they
constitute a Hilbert space such that the realizations
of the infinitesimal generators are of the form (2.3)
of the present paper, where the matrices T; and K
(K = M in Ref. 3) are of Type III.

We proceed to derive (2.15) from (1.14) and (1.22)
of Ref. 3. First of all, we identify the variable { of
Ref. 3 with the variables x, ¢, y, collectively, and the
function f({) of Eq. (1.14) of Ref. 3 with the com-
ponent *¥'(x, ¢, y) of the column vector ¥ (x). The func-
tion F(0, €, p, A) of Ref. 3 is identical to the func-
tion f(e,p,4) of Eq. (2.15). The transformation
function (£ | 0, €, p, 4) to be used in Eq. (1.14) of Ref.
3is now denoted by (x,t,¥|e, p,4). The function
f(&; €, 2) is now denoted by f(x, ¢, y; €, 1). Equations
(1.22) of Ref. 3 become, on using (I 2.13),

9kt 56 2) = 2 f(x, 1, 73 2) = O,
0x; 0x,

if(x, Lyie A)=if(x,t,v;6 4), (B1)
0x3
2 fonnvied = —igx 1 pia .
The general solution of (B1) is‘
f(x, t,v; €, ) = exp [i(xz — ek(y; €, 2), (B2)

where k(y; €, A) is essentially a constant of integration.
We must choose 4 to obtain all linearly independent
solutions. The simplest choice, which is the one we
take, is

k(y; e, ) =0,,. (B3)
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Thus,
S, t,y5 €, ) = exp [i(x; — €1)]d,,.  (B4)

From (1.24) of Ref. 3, we have in terms of the
notation of the present paper on using (I2.11),
(I2.12), (12.11a), and (I 2.2a)

x, 1,7 | € p, A) =exp [i(p-x — ep)]x(y | €, p, A),
(B3)

where x(y | €, p, 4) is given by (2.13). Then Eq. (1.14)
of Ref. 3 becomes Eq. (2.15) of the present paper.

Equations (2.15 ") for the generators of the Euclidean
group follow directly from (1.23) of Ref. 3, Eq. (B4)
of the present paper, and (I 2.14) and (I 2.15).

APPENDIX C: DERIVATION OF THE
EXPRESSION FOR THE INFINITESIMAL
GAUGE CHANGES

We shall now prove that Eq. (2.21) for the infini-
tesimal gauge changes G,(x) is identical to Eq. (2.23).
Let us define the matrix 4, by

A; = exp (iw = M) exp (ivNy)B,. (@)

Then the components of the column vector @{" are
constructed from the matrix elements of the matrix

A,V in accordance with Eq. (2.20). The principal
part of our proof consists in the rewriting of the
matrix 4, .

On expressing the matrices T; in terms of N; and
M, through (2.15a), we obtain, on using exponentia-
tion algorithm (I 3.26) and the commutation rules
for the matrices M; and N; which are the same as
those for the matrices in (I 2.7), the following result:

exp (WN,y)T; exp (—ivNg) = pT,;. (C2)
Thus, from (2.20")
exp (ivN3)B, = pB, exp (ivNy). (C3)

In a similar way, one can show that
exp (i - M)B, = % [—(p x M),
p

— €(pi/p)(p* N) + epN] exp (iw - M). (C4)
Thus, our expression for the matrix A4, is
A; = (p)7'[=(p x M), — €(pi/p)(p - N)
+ epN,] exp (iw - M) exp (iwN3). (C5)

Equation (2.23) follows on using (2.20), (2.21),
(2.17), and (2.22).
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Series of Stieltjes with nonzero radius of convergence R have been considered in this paper. 1t is well
known that sequences of Padé approximants to these series may be defined which converge in the
complex plane cut from —R to —co. It is shown that the Padé approximants satisfy inequalities between
0 and —R which are much more general than those already proved on the positive real axis. A new
sequence of approximants is defined, which are closely related to the Padé approximants and which
have very similar properties. The two sets of approximants may be used to determine the series of
Stieltjes within certain limits for points on the real axis between 0 and —R, given only the first few
coefficients of the power series expansion. The result is then extended to all points in the interior of a

circle with center at the origin and radius R.

1. INTRODUCTION

The importance of Padé approximants lies in the
fact that they can be used to obtain directly an
analytical continuation of a function of a complex
variable outside the region of convergence of the
Taylor series expansion for this function. Indeed, they
can be used to interpret series whose radius of
convergence is zero.

The known mathematical properties and, in
particular, the convergence of sequences of these
approximants have been discussed in a review article
by Baker, Jr.,! (which will be referred to as GB for
the rest of this paper). The problem of convergence
when the degree of the denominator and numerator
both go to infinity has only been solved completely
for series of Stieltjes.? In particular, it can be shown
that if such a series has radius of convergence R, then
sequences of Padé approximants in any closed finite
region of the complex plane cut along the negative
real axis from — R to — oo converge uniformly to the
analytical function defined by the power series.

It is proved in GB that the Padé approximants
form both upper and lower bounds to the series of
Stieltjes on the positive real axis, and similar relations
hold between the corresponding first derivatives.
These properties which are presented in Sec. 2 are very
important for the following reason: Given a function
is a series of Stieltjes and given the first few coefficients
of its power series expansion, then one can determine
the values of the function on the positive real axis, to
within certain limits given by the Padé approximants,
without knowing any more about the detailed form
of the function.,

The main purpose of this paper is to discuss the
properties of the Padé approximants on the negative

1 G. A. Baker, Jr., Advan. Theoret. Phys. 1, 1 (1965).

2 T, J. Stieltjes, Ann. Fac. Sci. Univ. Toulouse Sci. Math. Sci. Phys.
8,9, 1(1894).
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real axis between 0 and — R. In Sec. 3 it is shown that
the approximants once again give bounds to the series
of Stieltjes, but in this case they are all lower bounds.
Another important difference is that similar properties
may be obtained for derivatives of all orders—not only
the first. The fact that Padé approximants only give
lower bounds means that they cannot be used by
themselves to obtain limits on the exact function.
However, in Sec. 4 it is shown that one can define a
new sequence of functions which converge to the
exact function in the cut plane and which form upper
bounds to the exact function on the negative axis
between 0 and —R, and any one function of the
sequence depends on only the first few of the coeffi-
cients in the series expansion of the exact function.
The new approximants are related to the derivatives of
Padé approximants of a new series of Stieltjes obtained
from the original one by integration. With this new
type of approximant and the Padé approximant one
may once again determine (to within certain limits)
the values of the exact function on the negative real
axis between 0 and —R, given only the first few
coefficients of the series expansion. Indeed, one can
extend this result to all points contained in the circle
with center at the origin and of radius R, as is shown
in Sec. 4.

To illustrate the above results, a particular example
of a series of Stieltjes with nonzero radius of con-
vergence is considered in Sec. 5. This series is related
to a spectral integral of a kinematical factor which
arises in the approximate solution of the N/D equa-
tions in partial wave-dispersion relations.? Several
tables of numerical results are presented which
demonstrate how the above function satisfies the
properties discussed in the previous paragraphs. The
results of this paper are discussed in Sec. 6.

3 A. K. Common, J. Math. Phys. 8, 1669 (1967).
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2. SERIES OF STIELTJES AND THEIR PADE
APPROXIMANTS AS BOUNDS ON THE
POSITIVE REAL AXIS

A series of Stieltjes is defined by
(@) = ;]f,-(— zy’, Q.1
g=

if and only if there is a bounded nondecreasing
function é(u) taking on infinitely many values in the
interval 0 < u < oo such that

fi =J:ouj dd(u).

This definition is equivalent to the conditions

DO,n) >0, D(1,n)>0, (n=0,1,2,-"-)),

(2.2)

where
f m f m+1 f m+n
Soir  Smie -
D(m,n) = det| (2.4)
fm+n fm+n+1 fm+2n

From (2.3) it can be proved that D(m, n) > 0 for all
m and n.

A Padé approximant to the series f(z) is the quotient
of one polynomial P(z) of degree M by another Q(z)
of degree N such that

F(D)Q(z) ~ P(z) = AzMHN+L g gz MN+2 4 L
2.5)

where A4, B, - - -, are constants. The polynomials P(z) and Q(z) are determined by Eq. (2.5) so long as the

normalizing condition

00) =1

(2.6)

is added, and we say that P(z)/Q(z) is the [N, M] Padé approximant to f(z). In fact, [N, M] may be written

explicitly in terms of the coefficients f; as

f M-—N+1 f M~N+2 STt f M+1
Sar v fM+ ~
M ) M M )
Z fin(=2)' _ 2 fina(=2) 2 fi(—z)
=N j=N—1 3=0
[N, M] = ’ X))
f M-N+1 f M~N+g Tt f M1
f M f b7 &% R ! M+N
(—2)¥ (=N e 1

where f; = 0 if j < 0 and sums for which the initial
point is larger than the terminal point are omitted.
Infinite sequences of Padé approximants of the
form [N, N +j] where N— o and j> —1 are
considered in GB. Let P{)(z) be the numerator and
0¥ (2) be the denominator of [N, N + j]lin Eq. (2.7).
The inequalities (2.3) determine the position of the
zeros of Q{’(z) which lic on the negative real axis
between — R and oo, where R is the radius of converg-
ence of the series (2.1). It is then proved in GB that
sequences of Padé approximants of the form [N, N +
Jj1 with j > —1 converge in the cut plane (—oo <
z < R) to the function f(z) defined by the power series.
It is also shown in GB that the Padé approximants

satisfy the following inequalities when z > 0:
(DN + LN+ 1 +/]1— [N,N+/} 20,

2.8)
(~1)(1+j){[NsN+j] - [N- 15N+_]+ 1]} .->_0;
2.9)
(=DWIN, N+ j+ 11~ [N,N +/}} 20,
.19
and
WV, N>f@ > N —11  (@11)

Finally, it is proved that (2.11) may be differentiated
with respect to z giving

(N,NY 2 (') 2 [N, N~ 1), (212)
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Similarly, inequalities (2.9) and (2.10) may be differ-
entiated so long as j > 0. These results were obtained
from the following relations:

Pu(z) _ PR _ (=2M[D(1 +J, N)F
0.2 O OREENTE)

(2.13)
P{(2) _ PY:1(2)
(5)(2) Q(z+2)(z)

(=2 D1 +j, N ~ DDB +j, N — 1)
— D(1 +j, DB + j, N = 2)]

ORI (2)

2.14)
and a special case (when j = —1) of the relation
P%H)(Z) (7)(2)

Q(i+1)(z) QU)(Z)
_ =MD+ 2, N - DD+ 1L, N)
Q”*”(Z)Q"’(z) :

3. PADE APPROXIMANTS AS LOWER BOUNDS
OF f(z) ON THE NEGATIVE REAL AXIS

It is proved in GB that the zeros of Q{(z) lie
between ~R and — oo, thus Q{(z) is positive for
—~R <2< 0, since Qf\’;’(O) =D(1+/j,N-1)>0.
Hence, from Egs. (2.13), (2.14), and (2.15), for
j=2 —land —R<z<0,

W+ L,N+14+j1-[N,N+j120, G
(N,N+jl~[N—-1L,N+j+ 1120, (32
The inequality (3.2) follows from the fact that
[D( +j, N—1)D3 +j,N—1)—D( +j,N)
X DB +j,N—-2]>0,
as is proved in GB. The sequence [N, N + ] is
monotonic increasing from (3.1), and since it converges

to f(Z),

(2.15)

S 2 [N, N+ ] (34

for —R < z £ 0. From Eqgs. (3.1) and (3.2), the best
lower bound to the function f(z) obtainable from a
Padé approximant with a given even number of
coefficients is [N, N]; with a given odd number of
coefficients it is [N, N — 1]. Using Eq. (3.3), it may be
proved that these “best” approximants satisfy the
following inequalities:
LR NL<R2AL SV N=1]
<IN, NIK [N+ LNIL f(2). (3.3)
Now in the case where z > 0, the inequalities

(2.8)-(2.11) could be differentiated at most once; i.e.,
similar relations cannot be found for second or higher
derivatives of the Padé approximants. However,
when —R < z < 0, the situation is quite different. It
is now proved that the inequalities (3.1)-(3.4) may be
differentiated any number of times, so long as a
factor (—1) is introduced with each differentiation, so
that

{IN+ LN+ j+ 1] — [N, N+ jI"H~-1)" 2 0,

(3.6)
{IN; N+jI" = [N=1L,N+j+ 1= > 0,

3.7
and

{IN, N+j+ 1" = [N, N + ] =1)" > 0.
(3.8)
The proof of (3.8) is given below; Egs. (3.6) and (3.7)
may be proved in a similar way. Since the zeros of
049 (2) lie between — R and — o, the function
D(j+2,N-1D(j+1,N
F(z) = U G+ 3) Y )
N (20N (2)
may be written in the form
Fo)=Clz + a)(z + ag) "+ (z + xy)], (3.9)

where C is a positive constant and —«, are the zeros
of Q¥V(z) and QY(2).
Since z + «; > 0 for

~R<zL0,

d"F (z)

(-nrE2 50 (3.10)

for these same values of z and any integer n. Using
Leibniz’s theorem, the nth derivative of the right-hand
side of (2.15) is
= (_ 1)i+1[F(n)(z)22N+i+1
+ nF(n—l)(Z)22N+i(2N +j + 1) 4o
+"CF" () x QN +j+ 1) x -+~
X (2N +j—r 4 )Vt L
_ (_1)[i+l+(n+2N+i+1)] X [positive quantity]
= (—1)" X [positive quantity].

(3.11)

Inequality (3.8) then follows immediately from Eg.

(2.15). Since [N, N + j] tends uniformly to f(z) in any

finite closed region of the cut z plane, [N, N + jI*¥

tends uniformly to f")(z) in this same region.
Therefore, using (3.7),

{f"(z) — [N, N +jI"H=1)*>0. (3.12)

This last set of inequalities tells us that the magnitude
of the error between f(z) and the [N, N 4 j] Padé
approximant increases as z decreases from 0 to —R.
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The same is true for the corresponding derivatives of
any order.

4. NEW SEQUENCE OF APPROXIMANTS TO
A SERIES OF STIELTJES

It has been shown in Sec. 2 that Padé approximants
give both upper and lower bounds to a series of
Stieltjes f(z) when z > 0. Thus, given the first few
coeflicients of a power series expansion, f(z) can be
determined to within certain limits provided by these
bounds without knowing any more about its detailed
form. When 0 > z > —R, the Padé approximants
only give lower bounds; f(z) cannot be determined to
within limits in the above way. It is now shown that a
new sequence of functions may be defined which
converge to f(z), are upper bounds for 0 > z > —R,
and where any one function of the sequence depends
only on the first few coefficients of a power series
expansion of f(z). Now

1R 1/R
f@=ﬁ ! dﬂm=h—3ﬁ u d¢(u)

14+ uz 1 4+ uz
(4.1)
Let
: YE y de(u)
= — 4.2
F(z2) L oo 42)

and let G(z) be the integral of F(z) so that

G(z) = L “F(4) dt. (4.3)

Then
Gcwffmmu1+undﬂw,
0

1/R
=hbau+dm—2L %%%—wﬂ

after changing the order of integration®* and then
integrating by parts.

Without loss of generality we may take ¢(0) = 0.
Then, if the function y(u) is defined by the relations

f¢mm o<u<t,
0 R

'(x)

it is easily seen to be nondecreasing, bounded, and to
assume infinitely many values. Therefore the function
K(z) defined by the relation

/R ©
K@>=f #Mdu=f dy(u)
o 1+ uz 0o 14 uz
is a series of Stieltjes with radius of convergence R.

y(u) = (4.5)

lgu<oo,
R

4 The interchange of the order of integration is allowable for all
measure functions ¢(u).

Substituting in (4.4),
G(z) = fylog, (1 + z/R) — zK(2). (4.6)

Then differentiating this equation with respect to z,

F(z) = fo/(R+ 2) — [zK'(2) + K(z)]. (4.7)
Finally,
f@ =R ek + K@l @8)
R+ :z

An approximate expression for f(z) can be obtained
by replacing K(z) with its [N, M] Padé approximant.
Let (N, M) be the corresponding approximate form
for f(z). Then it is obvious from (4.8) that (N, N + j)
converges uniformly to f(z) as N — oo in any finite
closed region of the z-plane cut from — R to — oo, for
jz -1

The inequalities analogous to Eqs. (3.6)—(3.8) and
(3.12) are easily obtained. They are

[(N+ 1, N+j+ D" — (N, N + "= >0,

(4.9)
(N, N+ )™ —(N—=1,N 4+ D)= > 0,
(4.10)

(N, N+ j+ D)™ ~ (N, N + j)™)(—=1)* > 0,
(4.11)

[f"™(2) — (N, N 4+ j)™)(—1)~ > 0.
(4.12)

The last set of inequalities tell us that the (N, N + j)
are upper bounds to f(z) for —R < z £ 0, and that
the magnitude of the error between f(z) and
(N, N + )™ increases as z decreases from 0 to —R.
To find a particular (N, N 4 j) one needs to know
the corresponding Padé approximant for K(z). This is
determined from the coefficients of its power series
expansion. Let

K(z) =3 k(—2)" (4.13)

i=0

The k; are determined by substituting for f(z) and
K(z) in Eq. (4.8) their power series expansions, and
then equating coefficients. This gives

_ 1
@+
The Padé approximants of K(z), and hence the
approximants (N, M), can therefore be obtained from
the first few coefficients of the power series expansion
of f(z), as was required. It also follows from the
inequalities (4.9)~(4.12) that, for a given odd number
of coefficients used in the Padé approximant to K(z),

{folR™ — fia}. (4.14)

i
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(N, N — 1) is the best approximant to f(z); for a
given even number of coefficients, the best approxi-
mant is (N, N). From Egs. (4.11) and (4.12),

N, N=1D2(N,N)2(N+1,N)2f(z), 415

so that the **best approximants’ get closer to f(z) as the
number of coefficients used is increased.

Consider now the function E(z) which is the error
in replacing f(z) by its [N, M] Padé approximant,
ie.,

E@) = [N, M] — f(2). (4.16)

From (3.12), (—1)**E"(z) > 0 for —R < z<L0.
Take any circle with center at the origin and radius
r < R. Then since the Taylor series expansion of
E(z) converges when |z| < r, for these values of z

|E(z)] < |E(—r)| 4.17)

by the maximum modulus theorem. But since [N, M]
and (&, M) form lower and upper bounds to f(z) for
—R<:zL0,

|E(=n)| < HIN, M] — (N, M)}, (4.13)

Combining (4.17) with (4.18), it follows that an upper
bound on the modulus of the error in replacing f(z)
by [N, M] may be obtained from the first few coeffi-
cients in the power series expansion of f(z) when z
lies inside or on a circle of radius » < R. Since the
magnitude of [N, M]— (N, M) increases as z
decreases from 0 to — R, the best estimate of the error
at a point z = w (where w is complex and inside the
circle |z| = R) is

= [{[N, M] = (N, M)}, -

-

(4.19)

Similar bounds can be put on the error in replacing
f(2) by (N, M).

5. NUMERICAL RESULTS FOR A SERIES OF
STIELTJES OCCURRING IN PARTIAL WAVE
DISPERSION RELATIONS

Consider the scattering of scalar particles with equal
mass x4 and at a total energy squared equal to s.
The corresponding partial wave amplitudes 4,(s) are
then analytic functions in the complex s plane with
cuts along the positive real axis from 4u® to oo, and
from some value —s; to — oo along the negative real
axis. The usual problem is to solve for 4,(s), given its
discontinuity across the negative axis and using the
unitary condition on the right-hand cut. The N/D
method is probably the easiest way of doing this, but
the resultant integral equations in N or D, in general,
can only be solved approximately. One way is to
approximate F(s), the spectral integral of the kine-

matical factor p(s), over the right-hand cut so that

F(s) = 1 _p(¥) dx
IT Jap2 (x — s)x
by a rational function of s.> This particular case
[when this rational function is a Padé approximant of
F{(s)] has been discussed by the author.?
The above function is not a series of Stieltjes as it
stands, but, upon making the substitutions

2 2
4z and x A

(5.1

5= x = , (5.2)
1+ 2 (1 — u)
it takes on the new form
F(sy = LE 22) r P4/ — w)] ,
41" Jo (1 + zu)
= (1 + z)f(2), (5.3)

where this last equation defines the function f(z). Then,
since p(x) > 0, f(z) is a series of Stieltjes in z and,
from (5.3), it has a radius of convergence 1.

The particular case when

p(x) = [X—TMT = ut

is considered here. In this case the integral in (5.3)
may be evaluated giving

f(2) = 2H1”2z :1 . 2(_12)% log B - E:gi}} (5.4)

The coefficients f; in the power series expansion (2.1)
for f(z) are then given by

fi = 2Nu2Qi + 3. (5.5)

Values of f(2) and a selection of its approximants
are given in® Table I for z between 0 and — 1. It can be
verified from the table that for these values of z,

(2, 11< 2,21 < [3, 2] £ f(2)

<3222, D,
which are consistent with Eqs. (3.5) and (4.15). The
data given in Table I may then be used to prove that,
for the above values of z,

2,17 > [2,2] 2 [3,2) 2 f'(®

23,2222 220,
which are again in agreement with Eqgs. (3.6), (3.12),
(4.9), and (4.12). One may also notice that for values
of z close to —1, the Padé approximants [N, M] are

much better approximations to f(z) than the approxi-
mants (N, M). This result however may well depend

3 H. Pagels, Phys. Rev. 140, B1599 (1965).
¢ All numerical values in this paper have been calculated with
pn=1
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Table 1. f(z) and its approximants. (Values are multiplied by 10.)

z [2,1] [2,2] 3,2 f@ 3,2 2,2 @0
—0.1 5.6481 5.6481 5.6481 5.6481 5.6481 5.6481 5.6481
—-0.2 6.0496 6.0497 6.0497 6.0497 6.0497 6.0497 6.0497
—-0.3 6.5271 6.5282 6.5282 6.5282 6.5283 6.5283 6.5285
—04 7.1095 7.1113 7.1116 7.1117 7.1118 7.1121 7.1134
-0.5 7.8366 7.8430 7.8445 7.8448 7.8452 7.8474 7.8537
—0.6 8.7776 8.7975 8.8036 8.8051 8.8081 8.8208 8.8485
—0.7 10.054 10.112 10.136 10.144 10.168 10.239 10.356
—0.8 11.901 12.076 12.168 12.216 12.448 12.865 13.387
—-0.9 14854 15.418 15.829 16.213 19.770 22,921 25.721

on the particular function f(z) considered in this
section and may not be a general property.

In Table II the values of |[2, 2]|, |(2, 2)|, and the
corresponding errors are given for a selection of
points in the complex z plane inside the circle |z] = 1.
Only points with Im z > 0 have been considered,
but as f(z) and its approximants are real functions of
z, their values at points with Im z < 0 are obtained
by complex conjugation.

It is easily seen from Table 1I that the values of
| f(z) — (2, 2]| satisfy (4.17), i.e.,

1f@@) = 2,21 L1 f(=n~12,2),_,,
where |z| < r. The same is also true for |f(z) ~
(2, 2)].

As was shown in Sec. 4, one may put an upper
bound on the error between f(z) and the [N, M] or
(N, M) approximants without knowing any more
about the form of f(z) than the first N + M 4 2
coefficients in its power series expansion which gives
these approximants. For instance, when |z < r < 1
and the first six coefficients of the power series expan-
sion of f(z) are given,?

|f(z) = [2,2)) < {[2,2] — (2, D)},
and the right-hand side of this inequality can be

calculated.
For instance, when |z| < 0.6,

| f(2) — [2,2]] < 2.4 x 10

Since |[2,2]| ~ 10-2 for |z| = 0.6, this is a useful
estimate of the error involved in replacing f(z) by its
[2, 2] approximant. However, when |z} < 0.9, the
estimate of the error is

/(@ —[2,2] < 7.5 x 1073,

which is of the same order as |[2, 2]| and is therefore
not so useful. To have useful approximations to f(z)
for these values of z, one must use higher-order
approximants.

? Given the first six coefficients of the power seties, one can
calculate [3,2] as well as [2,2]. Better estimates for S will be
obtained by replacing [2, 2] with [3, 2] in the following work.

The particular series of Stieltjes considered in this
section has unit radius of convergence, and so the
results proved in this paper may be applied in the
region |z| < 1, which is small compared with the whole
complex z plane. However, this region of the z plane
maps onto the much larger region of the complex
s plane defined by Res < 2u% The interior of the
circle |z} = r < 1 maps onto the interior of the circle
with center at s = —4u?r?/(1 — r?) and with radius
4u*r/(1 — r®) in the complex s plane. The error
between f(z) and (N, M) or [N, M] for values of s
inside this circle is less than the error at the point
s = 4u?r/(1 — r?) on the s circumference of the circie
which corresponds to z = —r. This point on the
circle is the one farthest away from the right-hand cut
in the complex s plane.

6. CONCLUSIONS

Series of Stieltjes with nonzero radius of convergence
have been considered in this paper. If such a series
has radius of convergence R, then sequences of Padé
approximants may be defined which converge uni-
formly in any finite closed region of the complex
plane cut from —R to — 0. Properties of the Padé
approximants on the positive real axis have been
discussed in GB. An important result is that they
provide both upper and lower bounds to the exact
function in this region. This means that values of the
series of Stieltjes may be determined within certain
limits on the positive real axis, given the first few
coefficients of the power series expansion.

This paper has been concerned with the behavior
of the Padé approximants on the real axis between
0 and —R. The investigation of such behavior has led
to the definition of a new type of approximant to the
series of Stieltjes and the extension of the region of
interest to the interior of a circle with center at the
origin and of radius R.

Various inequalities between the series of Stieltjes
J(2) and its Padé approximants [N, M] were obtained
in Sec. 3 for z on the real axis between 0 and —R.
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Table I1. Values of [2, 2] and (2, 2) for complex z with the corresponding errors.

|zl Arg z (radians) 12, 2] 1/ = 12,2]] 12, 2)] /@) — (2, 2)
0.3 0 4.5165 E-2 7.9401 E-8 4.5165 E-2 2.6892 E-7
0.3 0.2I1 4.6406 E-2 1.0479 E-7 4.6406 E-2 2.0406 E-7
0.3 0.411 4.9440 E-2 1.2803 E-7 4.9440 E-2 3.3491 E-7
0.3 0.6I1 5.4916 E-2 2.3520 E-7 5.4916 E-2 3.1326 E-7
0.3 0.811 6.1649 E-2 4.2468 E-7 6.1649 E-2 4.2524 E-7
0.3 II 6.5282 E-2 5.2576 E-7 6.5283 E-2 9.1317 E-7
0.6 0 3.9567 E-2 1.3544 E-6 3.9567 E-2 11115 E-6
0.6 0.211 4.0893 E-2 1.6162 E-6 4.0893 E-2 9.4739 E-7
0.6 0.4I1 4.5289 E-2 2.7950 E-6 4.5289 E-2 2.4674 E-6
0.6 0.611 5.4241 E-2 7.2611 E-6 5.4236 E-2 6.9472 E-6
0.6 0.8I1 7.0880 E-2 2.7836 E-5 7.0904 E-2 4.1109 E-5
0.6 II 8.7975E-2 7.5778 E-5 8.8208 E-2 1.5764 E-4
0.9 0 3.5350 E-2 5.6592 E-6 3.5350 E-2 5.2075E-6
0.9 0.2IT 3.6688 E-2 6.9494 E-6 3.6688 E-2 6.2891 E-6
0.9 0.4I1 4.1297 E-2 1.3276 E-5 4.1305 E-2 1.4117 E-5
0.9 0.6I1 5.1530E-2 4.3881 E-5 5.1464 E-2 59592 E-5
0.9 0.8I1 7.5732 E-2 3.31194 E-4 7.6547 E-2 7.7226 E-4
0.9 II 15418 E-2 7.9492 E-3 22.921 E-2 6.7078 E-2

They are similar to corresponding inequalities holding
on the positive real axis, but are much more general
since they may be differentiated any number of times,
while the latter inequalities may be differentiated at
most once.

However, there is a disadvantage because the Padé
approximants give only lower bounds to the series of
Stieltjes f(z) on the negative real axis, so that the sum
of the series can no longer be determined (within
certain limits) from the first few coefficients of the
power series expansion. To remedy this defect, a new
type of approximant (N, M) to f(z) was defined in
Sec. 4, which has properties quite similar to those of
the Padé approximants. For example, it may be
obtained from the first few coefficients of the power
series expansion for f(z), sequences of the form
(N, N + j) converging to f(z) as N — o for j > —1,
and all z in the complex plane cut from —R to — .

The properties of this new set of approximants were
discussed in Sec. 4, and, in particular, their behavior
was examined on the real axis between 0 and —R
for which various inequalities were obtained similar
to those holding for the Padé approximants. However,
they give upper bounds to f(z) on the above part of the
real axis and so can be used with the Padé approxi-
mants to determine f(z), within certain limits, from

the first few coefficients of the power series expansion.
This result may be extended off the real axis to the
interior of a circle with center at the origin and radius
R, using the maximum modulus theorem, as was shown
in Sec. 4. In Sec. 5 a series of Stieltjes, which is of some
interest in the solution of partial-wave dispersion
relations, was considered. Numerical results were
obtained which amply demonstrate the results of the
previous sections.

The new approximants (&, M) have only been
defined for a series of Stieltjes. However, one can
define them for any power series with nonzero radius
of convergence by using (4.8), (4.13), and (4.14).
Presumably they will have properties quite similar to
the Padé approximants of the same power series.
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The independent invariants of the fundamental and adjoint inhomogeneous algebras are explicitly
constructed. Some classification of inhomogeneous algebras is given and their scalars and invariants

are discussed.

1. INTRODUCTION

The first step in computing the representations of
Lie algebras is usually that of finding the invariants
which label the representations. Beyond this use,
studying the invariants may also be helpful in under-
standing the structure of the algebra itself. Here we
wish to discuss some general considerations concern-
ing the polynomial invariants and scalars of inhomo-
geneous unitary algebras with compact homogeneous
parts (compact inhomogeneous unitary algebras).

By an inhomogeneous algebra we mean the direct
sum of a semisimple algebra (restricted here to be a
unitary algebra, that is 4,), which we refer to as the
homogeneous part, with an Abelian invariant algebra,
the inhomogeneous part. As shown by Rosen! the
inhomogeneous part transforms according to some
representation of the homogeneous part. The gener-
ators are labeled E and p for homogeneous and
inhomogeneous parts, respectively, and sometimes T
is used for a generator which could be either E or p.

By a scalar we mean a polynomial in the generators
which commutes with all E’s, and by an invariant a
scalar which commutes with all p’s.

We shall be considering the algebra A4, and the
group SU(n), so that / and n shall have this fixed
meaning (except when used as indices), andn =/ + 1.
ISU(n) and IU(n) shall refer to the inhomogeneous
unimodular unitary and unitary groups, respectively,
with unspecified inhomogeneous parts.

There are two special algebras, which will be given
names: the adjoint (inhomogeneous unitary) algebra,
and the fundamental (inhomogeneous unitary) alge-
bra. The terms in parentheses may be left out. These
are the algebras with an inhomogeneous part trans-
forming according to the adjoint and fundamental
representations of the simple part, respectively.

Tensor notation is used, with upper and lower
indices. The commutation relations in this notation
are reviewed for convenience in the Appendix. The
indices will be arranged in Young patterns (except if

* Work supported by a grant from Long Island University.
1J. Rosen, Nuovo Cimento 45A, 234 (1966).
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indicated) and we will refer to mixed form for a
generator or polynomial which has both upper and
lower indices, and (completely) lower form if it is
written with only lower indices. The summation
convention will be used for latin letters appearing
once as an upper index and once as a lower; Greek
indices are not summed and are to be understood as
representing any arbitrary index in the set.

If an index appears on a p and on an E, for example,
we shall say that the p and E are linked or connected;
thus p, - - - E*, or we might say that the E is linked to a
lower pattern. We might also have p connected to
another p through an E: p; - - - E}- - - pi.

In Sec. 2 we consider how to construct scalars for
the case of a simple homogeneous part and an
inhomogeneous part which transforms according to a
single irreducible representation of the simple part
(an irreducible simple inhomogeneous algebra).
A few general remarks are also made about invariants.
In Sec. 3 we find the independent invariants for the
fundamental algebra, and in Sec. 4 we do the same for
the adjoint algebra. Section 5 gives a brief discussion
of the algebra whose inhomogeneous part is reducible
and Sec. 6 describes the algebras which result when
the homogeneous part is semisimple but not simple.
Some remarks are made about scalars in this type of
algebra.

2. IRREDUCIBLE SIMPLE
INHOMOGENEOUS ALGEBRAS

A discussion of how scalars are formed is useful not
only because it is a first step toward finding the
invariants, which must be scalars, but also because it
sheds light on the structure of the algebra. In this
section we shall be concerned with the irreducible
simple inhomogeneous algebra. Other cases are
considered later.

First we wish to show that for the algebras con-
sidered here and in the notation in which an expression
contains an equal number of upper and lower indices,
an expression is a scalar if all the indices are saturated,
that is, each appears once as an upper index and once
as a lower, and is summed over.



40 RONALD

The scalars are to be found by taking all possible
products of any number of the E’s with any of the
mixed forms of the p’s and distributing the indices in
all possible ways. Not all of these expressions will be
independent of course. For example, for the adjoint
representation of A, the different forms of the p’s are

m i

7 n 8
pj’ pr ’ pria p i
8 k]

In order that an expression be a scalar it will be
required to commute with all the EZ separately,
thereby not distinguishing explicitly between U(n)
and SU(n). This can be done because by requiring an
equal number of upper and lower indices the value of
the commutator of E} with some expression is equal
to zero since it is proportional to the difference
between the number of upper and lower indices.
Therefore the independent generators H; of SU(n)
which are each a sum of the EZ are completely deter-
mined by and completely determine the commutator
of E2. So either set can be used and it is simpler to use
E=. This requirement cannot always be imposed for
other algebras as we shall show below.

We first note that saturated indices contribute
nothing to the commutator; if all the indices were
saturated, clearly the term would be a scalar:

[ES, T .3 1=T. 5. . 08" —= mt s (2.1

Y IR

By T

and these two terms cancel.

There is another possible way of forming invariants;
by the use of the term €, ..., the completely anti-
symmetric symbol. Assuming that a complete set of
polynomial invariants exist, then invariants with the
€ are not independent of those that are formed
without it. Let us consider IU(n) in which case this
symbol is not defined. Then, under the assumption,
any representation is completely labeled by the in-
variants that do not include the €. Now with two
inequivalent, irreducible representations of ISU(n) we
can associate two inequivalent, irreducible representa-
tions of /U(n); since the latter are completely labeled,
the former are also.

That two inequivalent representations of /SU(n) are
inequivalent for IU(n) is clear: the only difference
between the latter and the former algebras is that the
latter contains one more generator. Thus if there is
no matrix which will transform all the representatives
of ISU(n) in one representation into the representa-
tives in another representation, adding one more
generator will not produce such a matrix.

An irreducible representation of ISU(n) is an
irreducible representation of IU(n), with one exception,
as we shall show below. So two inequivalent, irreduc-
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ible representations of ISU(n) give two inequivalent,
irreducible representations of /U(n). The converse
need not be true. The exception occurs when E? links
two equivalent representations of ISU(n). But this
does not change the fact two inequivalent, irreducible
representations of ISU(n) are correlated with two
inequivalent, irreducible representations of [U(n),
and so are completely labeled.

We must also consider the possibility that there are
more independent invariants which can be formed for
IU(n) than can for ISU(n). This may occur because
there are different ways of writing the p’s and because
of the occurence of the operator Ef. However, as we
shall show in Sec. 6, E? can occur in an invariant only
if the p’s are chosen with equal number of upper and
lower indices, and we can always chose p’s not of this
form. Furthermore, if we form two invariants using
different forms of the p’s, then their value is deter-
mined by the matrices of ISU(n), as E! does not
appear in the invariant. Therefore the form of p is
irrelevant in determining its value. So if an invariant
has different values for different representations of
IU(n), it will have different values for the represen-
tations of IUS(n) which are correlated with the former
representations.

Accordingly we shall not consider the € symbol
further.

The proof that an irreducible representation of
IU(n) is an irreducible representation of ISU(n) is the
following. For IU(n) there is one extra operator Ef
which commutes with all the semisimple operators
and whose commutator with any of the p’s is propor-
tional to that p. Suppose now that A4 and B are two
different representat